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Abstract

Artificial Neural Network (ANN) classification in non-stationary environments is a
non-trivial problem as ANNs operate on fixed training sets and thus classify
inaccurately in such applications. A Dynamic Neural Network (DNN) is here defined
as a Neural Network that can alter its own topology to accept perpetual novelty in a
non-stationary signal space. One such network is Fritzke’s GNG-U algorithm.

A novel DNN called the Plastic Self Organising Map (PSOM), an extension to
Kohonen’s Self Organising Map (SOM) is presented. The PSOM is a graph
structure, constructed online from the temporal and spatial properties of the input
space. In tests, the PSOM is shown to classify accurately on a number of non-
stationary environments, perpetually accepting new classes and forgetting old
patterns. The effects of the parameters on the network’s operation are investigated
and the PSOM is shown to be robust in the selection of its parameters. The PSOM is
improved with the Extended Plastic Self Organising Map (EPSOM), which requires
fewer parameters required to initialise the network. A comparison was made with
Fritzke’s GNG-U algorithm and it is found that GNG-U was slower but more

accurately represented the topology of the input space.

A novel algorithm called the Temporal Plastic Self Organising Map (TPSOM) is
presented, which is an output graph consisting of a Markov chain that can be used to
predict the next input state. This algorithm alters the semantics of the PSOM’s links.
The TPSOM is shown to classify accurately on a static Markov chain and a dynamic

Markov chain modelled by switching from one static Markov chain to another.

All the novel algorithms are tested on a real world radar data set. This is an example
of a non-stationary system as a class disappears during the length of dataset and
another class appears. The PSOM and EPSOM are able to classify while keeping a
bounded topology. As the radar data set did not have ordered structure, the TPSOM
does not produce a meaningful structure. The TPSOM s also shown to represent
some of the statistical properties of a piece of plain English text.
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