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5.   Technique Evaluation - TPSOM 
 

 

5.1 Introduction 

This Chapter deals with the testing and evaluation of the TPSOM described in 

Chapter 4. The aim of presenting these results is to show the operation of the 

technique and to show the effects of the parameters on the operation of the 

algorithms. In the tests that follow, four types of data set were used. 

 

1. An artificial data set was generated to allow comparison between the different 

techniques. This data set was designed to show the capabilities of the 

different networks. This set was generated with 7 classes, the overall structure 

of the data remaining the same. 

2. A real-world data set was taken from Thales Research and Technology (UK) 

and consisted of radar pulse data. 

3. A Static Markovian data set was generated from a homogeneous State 

Transition Matrix (described in Section 5.4.4). 

4. A Non-stationary Markovian data set was generated from a discontinuous 

non-stationary Transition Matrix (described in Section 5.4.5). 

5. A real world data set taken from Charles Dickens ‘Great Expectations’ as a 

good example of an English text. 

 

The outputs from the TPSOM are: 

 

• The Class Output, this is the arbitrary number assigned to each class within 

the PSOM. This arbitrary class number can then be matched with known 

classes during training if required. From this, the number of classes (or states) 

held by the network can be calculated 

• The Recognition Error which is the Euclidean Distance between the input and 

the focus (best match).  

• A class association matrix that compares the labels of the input class to that 

of the output class.  
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• A state transition matrix that shows a matrix representation of the network 

topology. 

 

All of these outputs are dynamic and are studied over time and were created using 

Raih, as described in Chapter 2. The tests are numbered to give a logical flow 

although they may not have been performed in the numbered order. 

 

5.2 Artificial Data Sets 

Two artificial data sets (Type 1) were created to test the following features of the 

TPSOM. Each numbered item represents the class number that will be used to refer 

to it. A stopping pattern, for example, will be referred to as Class 2. 

 

1. Regular Patterns. If a pattern is regularly occurring and persistent, then each 

network should continue to recognise the pattern. 

2. Stopping Pattern. A pattern that disappears from the data set. Each 

technique should eventually forget the pattern that has disappeared. 

3. Infrequent Patterns. A pattern is infrequent if it appears in a regular way but 

with a large time interval between presentations to the network. 

4. Irregular Patterns. An irregular pattern appears at random intervals. This 

type of pattern is used to investigate whether the network’s response is not 

dependent on the frequency of occurrence of the patterns. 

5. Starting Pattern. A pattern that appears late in the operation. Each technique 

should be able to accept the new pattern. 

6. Second Regular Pattern. Another persistent pattern that is added in order to 

avoid any neurons self-linking. 

7. Third Regular Pattern. As for class 6. 
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Figure 5.1 The 7 Class Artificial Multivariate Dataset with 20% noise for use with the TPSOM. 

 

It was soon found that for the TPSOM a slightly different data set was required (see 

TPSOM Section for justification). This second artificial data set has 7 distinct 

patterns that are corrupted by 20% noise (Figure 5.1). One possible detrimental effect 

of adding the new patterns is that the density of the random pattern is much less than 

before. 
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Figure 5.2 The 7 Class Artificial Multivariate Data Set with 20% noise and 100 pure noise 

patterns. For use with the TPSOM. 

 

To test the TPSOM with a data set corrupted by noise, the 7 class multivariate data 

set had 100 pure noise patterns added to it (Figure 5.2). Although the binary data set 

was also corrupted by noise (to give the classes width in the input space), all 

instances belonged to an input class. The addition of this new set of noise patterns 

gives patterns that do not belong to any input class. Due to the generation process, 

some of these new noise patterns fall within the same space as the patterns of an 

input class, this is unavoidable and the networks will not be able to distinguish 

between the two types of patterns in this case. 

 

5.3 Great Expectations Data Set 

This dataset was used to explore the TPSOM’s ability to represent a text in a network 

diagrammatic form (a state transition matrix). In this case, each node would represent 

a single letter (a, b, c … z) and the links between nodes would represent the 

probability that one letter follows another. The problem as a whole is a very large 

one requiring 26 different nodes. As the size of the network increases and the 

Robert I. W. Lang   127



  Technique Evaluation 

probability transitions between states are very similar, then little information can be 

gained from the network. A quick test confirmed this. Instead, the pattern was 

reconfigured as the extraction of vowel pairs from the document. As there are only 5 

vowels in English, there will only be 5 nodes in the network. 

 

Charles Dickens’ Great Expectations was used as it was thought to have reasonably 

modern test and yet a wide breadth of vocabulary. Only the first 9 chapters were used 

as it was deemed unnecessary to use the entire book to demonstrate this feature of the 

network. The first 9 chapters yielded 4663 pairs of vowels. 

 

The novel was converted into vowel pairs by finding each pair of vowels and 

separating them with a space. For example, the first paragraph is (vowel pairs are in 

bold): 

 

“My father's family name being Pirrip, and my Christian name Philip, my infant 

tongue could make of both names nothing longer or more explicit than Pip.  So, I 

called myself Pip, and came to be called Pip.” 

 

The vowel pairs for this paragraph are: 

 

“ei ia ue ou” 

 

It was possible to calculate the state transition matrix for the first 9 Chapters by 

taking the 25 possible combinations of vowels and calculating the percentage that 

given a vowel, another would follow. This is shown in Table 5.1. Some properties of 

the English language can be found in this table: for example, the vowel pair ‘AA’ is 

very rare in English, as is ‘UU’. The pair ‘II’ can be found in plurals but is also rare. 

We can see that in the first 9 chapters of Great Expectations, there are no instances of 

these three vowel pairs. 

 

Table 5.1 The correct probability that one vowel follows another. Read the rows first and then 

the columns. For example, A followed by E comes up as 0.002. 

 A E I O U 
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A 0 0.002 0.894 0.002 0.102

E 0.536 0.342 0.101 0.017 0.003

I 0.083 0.412 0 0.495 0.010

O 0.040 0.129 0.041 0.227 0.564

U 0.263 0.333 0.376 0.027 0

 

5.4 Temporal Plastic Self Organising Map 

The Temporal Plastic Self Organising Map’s departure from typical network 

structure led to a departure in the manner in which testing was performed. For these 

tests, the visual output and the State Transition Matrix (STM) are of interest as well 

as the error between input and focus. The following tests were performed: 

 

- Test 1: Operation of TPSOM on Artificial Data Set. 

- Test 2: Operation of TPSOM on Noisy Artificial Data Set. 

- Test 3: Operation of TPSOM on Radar Data. 

- Test 4: Operation of TPSOM on Static Markov Chain. 

- Test 5: Operation of TPSOM on Dynamic Markov Chain. 

- Test 6: Effect of Node Building Threshold, an, on outputs. 

- Test 7: Effect of Learning Rate, br, on outputs. 

- Test 8: Operation of TPSOM on plain English vowel pairs. 

 

The artificial multivariate data set used until now is not entirely suitable for this 

implementation of the TPSOM. The TPSOM creates directed graphs. It is 

conceivable that a class could be presented twice in a row or two classes could 

alternate between them. This can be shown graphically in Figure 5.3. Although easily 

drawn here, a software implementation that resulted in clear graphs was not possible. 

This is not a limitation of the TPSOM but a limitation of manner in which the 

software was written. 

A B

Figure 5.3 TPSOM linking graphical problem illustration. 

 

Robert I. W. Lang   129



  Technique Evaluation 

To overcome this problem, two more patterns were added to the artificial 

multivariate data set. This addition means that there are never less than three patterns 

in the graph. The new multivariate data set, known as 7 pattern artificial multivariate 

data set is shown in Figure 5.1. To facilitate understanding of the state transition 

matrices, the values that are 0 (where there is no transition between the states) are set 

to light grey. This problem was later solved for performing tests on the plain English 

vowel pairs. 

 

The spatial clustering of the TPSOM (such as the locating of focus) is identical to the 

PSOM. This benefits experimentation as it gives a starting point for some of the 

network parameters. 

  

5.4.1 Test 1: 7-Pattern Artificial Multivariate Data 

The aim of this experiment is to show the TPSOM operating on the 7 pattern 

artificial multivariate data set (Figure 5.1). The parameters used for this test are 

shown in Table 5.2. 

Table 5.2 TPSOM Test 1 Parameters. 

Parameter   Value
Node Building Parameter (an) 0.29 
Link Removal Threshold (ar) 0.1 
Learning Rate (br) 0.025 

 

Table 5.3 TPSOM Test 1: State Transition Matrix after 100 iterations. 

 0 1 2 3 4 5 6 
0 0.00 1.00 0.00 0.00 0.00 0.00 0.00
1 0.00 0.00 1.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 1.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 1.00 0.00 0.00
4 0.23 0.27 0.00 0.00 0.00 0.24 0.25
5 0.00 1.00 0.00 0.00 0.00 0.00 0.00
6 0.00 1.00 0.00 0.00 0.00 0.00 0.00
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Table 5.4 TPSOM Test 1: State Transition Matrix after  700 iterations. 

 1 2 3 5 6 
1 0.00 1.00 0.00 0.00 0.00
2 0.00 0.00 1.00 0.00 0.00
3 0.51 0.00 0.00 0.19 0.29
5 1.00 0.00 0.00 0.00 0.00
6 0.50 0.00 0.00 0.49 0.00

 

Table 5.5 TPSOM Test 1: State Transition Matrix after 850 iterations. 

 7 1 2 3 5 6 
7 0.0 1.0 0.0 0.0 0.0 0.0 
1 0.0 0.0 1.0 0.0 0.0 0.0 
2 0.0 0.0 0.0 1.0 0.0 0.0 
3 0.25 0.37 0.0 0.0 0.25 0.13
5 0.53 0.46 0.0 0.0 0.0 0.0 
6 0.34 0.3 0.0 0.0 0.35 0.0 

 

The initial parameter values for the test were taken from the PSOM Test 1. This is 

possible because the TPSOM and PSOM algorithms and data sets are similar enough 

to produce acceptable outputs. These values provided a good starting point for a 

short tuning exercise. It was found that the parameters used in the PSOM Test 1 were 

adequate to produce an output in this test. A short empirical study was performed to 

find br. This study was achieved by comparing the class labels output of the TPSOM 

to the actual class labels of the data set. If the outputs are similar, then the network is 

assumed to be working correctly. 
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Figure 5.3 TPSOM Test 1: Network states at key points during its operation. Due to the small 

print of the font, the numeral ‘0’ appears as a rectangle. 

 

Figure 5.3 shows the progression of the network structure at important points during 

the 1000 iterations. These snap-shots are taken at 100,400, 700 and 850 iterations. To 

increase implementation speed, circles were drawn instead of arrowheads to 

represent direction. Link shade denotes the probability of this route being between 

the two neurons it connects: the higher the probability the shorter and darker the link. 

This allowed the structure to be quickly analysed (particularly useful when the 

network evolves in real time on screen). The numbers by the links are the percentage 

probabilities and the number in the top left hand corner of each neuron is the class 

number associated with that neuron. The neuron labelled ‘0’ represents the initial 

neuron. 

 

The 100 iteration picture shows the network after all classes but class 5 have been 

shown to the network. The structure at this point is quite simple. The network 

regularly follows the pattern 1→2→3→4 and then from class 4, there are four 

choices, either back to class 1, to class 0, class 5 or class 6. The most probable is 
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from 4→1 but marginally with a probability of 0.27. Each state class 0,5 or 6 return 

to class 1.  
 
Table 5.3 shows the state transition matrix after 100 iterations. Comparing the 

diagram and Table 5.3, one can see that the probabilities match (the table 

probabilities add to 1.0, the diagrams are percentages to improve readability). All the 

links from one neuron (one row in the state transition matrix) sum to 1.0. A small 

error occurs when the probabilities values are truncated for easy viewing. Therefore, 

the output values often sum to 0.99 or 99% rather than 1.0 and 100%. This is 

acceptable as further analysis (not included for the sake of brevity) shows the pre-

truncation sum to be 1.0. 

 

After 400 iterations, the initial neuron (neuron 0) has been removed. 400 iterations is 

the point where class 2 is no longer shown to the network (the class disappears from 

the data set). At this time, the initial neuron (class 0) has been removed. The strong 

linkage between patterns 1,2,3 and 4 is still obvious; however, this is unlikely to 

remain the case as class 2 (represented by the network as class 4) is no longer 

included in the input set. 

 

 

Figure 5.4 TPSOM Test 1: The network state after 1000 iterations. 

 

After 700 iterations, class 2 (shown by the network as class 4) has been removed. 

This is the smallest network size required to represent this number of classes. At 800 

iterations, class 5 is shown to the network for the first time. The plot at 850 iterations 
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shows this new class assigned class 7 by the TPSOM. Between 850 iterations and 

1000 iterations (Figure 5.4) there is no difference in the network structure, only that 

some of the link lengths have changed to fit the new data. The spatial locations of the 

neurons are organised to produce the most meaningful network given the changing 

structure of neurons and links. The spatial locations of the neurons are not the focus 

here but the ability to analyse the resultant structure. 

 

 

Figure 5.5 TPSOM Test 1: The class output from the actual class labels (top) and those 

produced by the TPSOM (bottom). 

Table 5.6 TPSOM Test 1: Class associations between input class numbers and the TPSOM class 

numbers. 

Input Class Number TPSOM Class Number 
1 1 
2 4 
3 0,6 
4 5 
5 7 
6 2 
7 3 
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Another output of the test is the Class output. Figure 5.5 shows two class outputs. 

The top graph is the class given to the input set and the bottom graph is the class 

given by the network. The class labels given to the input set and by the network are 

both arbitrary. At each time instance (horizontal axis) there is one instance of a class. 

This is represented by a dot. For every dot on the top graph (input class number) 

there is a dot on the lower graph (TPSOM output class). Each line represents a class. 

Therefore, as the TPSOM is classifying correctly, a line on the top graph will 

correspond with a line on the lower graph. Table 5.6 shows the associations between 

the input class number and the TPSOM given class. Initially, the TPSOM assigned 

input class 3 as class 0, because the initial neuron (labelled class 0) was, by chance, 

located within the area of input class 3. This only lasted until iteration 300 when the 

neuron concerned was removed and TPSOM class 6 took over. 

  

 

Figure 5.6 TPSOM Test 1: The recognition error over time. 

 

Figure 5.6 shows the recognition error (the Euclidean distance between the input 

pattern and the focus) from the TPSOM. This is to show that even though there is 

only one neuron representing each class, the error manages to remain below 0.2. This 

is a known property of this data set. It is expected that if the classes were of different 

sizes, then this may no longer be the case. After iteration 50, no new patterns are 

shown to the network until iteration 800, therefore the recognition error tracks the 

noise of the input patterns caused by their spread in the input space.  

5.4.1.1 Test Summary 

In this test, the TPSOM was tested on an artificial dataset that had a known temporal 

structure. Using parameters based on previous experiments, the TPSOM 
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satisfactorily classified the 7 classes differently with arbitrary numbering. The final 

network output is a directed graph that represents the temporal structure of the 

network. This would not have been visible using the (E)PSOM algorithms. 

5.4.2 Test 2: The Operation of TPSOM on Noisy Artificial Data Set. 

The aim of this experiment was to see how the TPSOM would react to an input set 

that contained a pure noise class, patterns that did not belong to any other class and 

appeared anywhere in the search space at random. This new input set was created by 

taking the input set from Test 1 (the 7 pattern artificial multivariate input set) and 

adding 100 random patterns with the class label 0. This expanded the data set from 

the previous 1000 data points to 1100. Some of these patterns are likely to exist 

within the clusters of existing patterns but this was considered acceptable. The new 

data set can be seen in Figure 5.2. Compared with Figure 5.1, it can be seen that there 

are new ‘dots’ or patterns that are placed randomly within the search space. These 

represent the random patterns. As the non-noise classes (those that are to be captured 

by the network) had not changed from Test 1, the same parameters were used (Table 

5.2). The detrimental effect of adding this pure noise pattern is that the density of the 

non-frequent patterns is reduced. 

 

The TPSOM was tested over the 1100 data points with network state samples 

(graphical and state transition matrices) taken at 100, 400, 700, 960 and 1100 

iterations. The network states can be seen in Figure 5.7 and Figure 5.8. After 100 

iterations, the network does not look dissimilar from the 100 iterations of the original 

data set (Figure 5.3). The largest difference is the number of high probability links, 

which is less in this test than before. The State Transition Matrix after 100 iterations 

(Table 5.7) reflects this, as there are no entries of probability 1.0 or close to it. The 

difference really occurs after 400 iterations when the additional links caused by the 

noise patterns increase the connectivity between the neurons and thus make the 

structure less coherent. By comparing Figure 5.3 and Figure 5.7 for 400 iterations, it 

can be seen that the complex structure of the network no longer clearly shows the 

temporal nature of the input set as shown in Figure 5.3. The noise input patterns have 

increased the connectivity such that the main characteristics in the data are no longer 

clearly visible. Also, the number of neurons in the network in this test is far greater 
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as the noise patterns exist in all areas of the input space. The State Transition Matrix 

at 400 iterations (Table 5.8) has very few large values and has many entries. 

 

Between 700 and 950 iterations, the situation worsens; Class 2 disappears after 400 

iterations but the neurons pertaining to this class remain in the network even after 

950 iterations. As there are so many small links within the network, neurons very 

rarely become unlinked and thus the class 2 neuron is retained. From an efficiency 

standpoint, this retention of information is undesirable although the addition of 

neurons will stop when there are enough to cover the whole input space.  

 

Table 5.7 TPSOM Test 2: State Transition Matrix after 100 iterations. 

 0 1 2 3 4 5 
0 0.00 0.34 0.00 0.00 0.33 0.33
1 0.00 0.00 0.48 0.30 0.22 0.0 
2 0.00 0.42 0.00 0.58 0.00 0.00
3 0.00 0.29 0.00 0.00 0.71 0.00
4 0.35 0.33 0.00 0.00 0.00 0.32
5 0.00 0.59 0.00 0.41 0.00 0.00

 

Table 5.8 TPSOM Test 2: State Transition Matrix after 400 iterations. 

 0 1 2 3 4 5 6 7 
0 0.00 0.23 0.15 0.15 0.14 0.18 0.00 0.16 
1 0.00 0.00 0.43 0.00 0.19 0.00 0.18 0.21 
2 0.00 0.00 0.00 0.84 0.16 0.00 0.00 0.00 
3 0.00 0.00 0.19 0.00 0.42 0.21 0.19 0.00 
4 0.27 0.27 0.13 0.00 0.00 0.14 0.18 0.00 
5 0.00 0.59 0.00 0.15 0.26 0.00 0.00 0.00 
6 0.25 0.25 0.25 0.00 0.26 0.00 0.00 0.00 
7 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 
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Table 5.9 TPSOM Test 2: State Transition Matrix after 700 iterations. 

 0 1 2 3 4 5 6 7 
0 0.00 0.25 0.11 0.12 0.10 0.18 0.13 0.12 
1 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
2 0.16 0.19 0.00 0.51 0.14 0.00 0.00 0.00 
3 0.16 0.17 0.12 0.00 0.21 0.12 0.11 0.11 
4 0.23 0.21 0.10 0.16 0.00 0.00 0.14 0.15 
5 0.00 0.45 0.21 0.19 0.00 0.00 0.00 0.15 
6 0.16 0.17 0.17 0.17 0.16 0.17 0.00 0.00 
7 0.18 0.22 0.19 0.20 0.00 0.20 0.00 0.00 

 

 

Figure 5.7 TPSOM Test 2: Network states through time at key point during operation. 
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Table 5.10 TPSOM Test 2: State Transition Matrix after 950 iterations. 

 0 1 2 3 4 5 6 7 
0 0.00 0.30 0.10 0.13 0.00 0.23 0.12 0.12 
1 0.00 0.00 0.80 0.00 0.00 0.00 0.20 0.00 
2 0.00 0.00 0.00 0.58 0.00 0.00 0.14 0.28 
3 0.19 0.24 0.00 0.00 0.16 0.11 0.14 0.14 
4 0.21 0.21 0.00 0.15 0.00 0.16 0.13 0.14 
5 0.00 0.36 0.00 0.00 0.20 0.00 0.22 0.22 
6 0.13 0.15 0.15 0.14 0.13 0.15 0.00 0.14 
7 0.16 0.30 0.17 0.19 0.00 0.19 0.00 0.00 

 

Table 5.11 TPSOM Test 2: State Transition Matrix after 1100 iterations, the entries in grey 

show that persistent, regular ordering still remains in the network amongst noise. 

 0 1 2 3 4 5 6 7 
0 0.00 0.29 0.10 0.12 0.00 0.24 0.12 0.13 
1 0.21 0.00 0.79 0.00 0.00 0.00 0.00 0.00 
2 0.00 0.00 0.00 0.89 0.00 0.00 0.11 0.00 
3 0.21 0.22 0.00 0.00 0.16 0.11 0.12 0.18 
4 0.17 0.24 0.13 0.12 0.0 0.12 0.10 0.11 
5 0.19 0.27 0.00 0.00 0.17 0.00 0.17 0.19 
6 0.13 0.16 0.15 0.14 0.14 0.14 0.00 0.14 
7 0.00 0.33 0.11 0.13 0.15 0.13 0.15 0.00 

 

The State Transition Matrix for 950 iterations is completed approximately 50 

iterations after Class 5 is shown to the network. No new neurons are added to the 

network, and a neuron previously associated with noise is now likely to be used to 

represent input Class 2. The connectivity is still high, with many of the matrix entries 

filled with small values, indicating transitions that are not regularly occurring. This is 

reflected in Figure 5.7 (950 iterations) where the graph is so highly connected that no 

meaningful structure is captured in the network representation. 
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Figure 5.8 TPSOM Test 2: The network state after 1100 iterations. 

 

Figure 5.8 shows the network structure after 1100 iterations. This is the most stable 

state of the network and yet there are too many links to extract any meaningful 

information. Although there are many links with low probability (as can be seen in  

Table 5.11) there are two links of high probability (highlighted in grey). These links, 

1→2 and 2→3 are the only structure amongst the large number of links. These two 

links are represented by the darkest links in Figure 5.8. This presence of links with 

high probability shows that although the spatial noise levels are high, some structure 

can still be represented by the network, even when the signal to noise ratio is very 

low. 

 

 

Figure 5.9 TPSOM Test 2: The recognition error through time. 

 

Figure 5.9 shows the recognition error during the network’s operation. Due to the 

noise, the error level does not settle to a minimum value and it is impossible to see 
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any prominent spikes associated with the presentation of a new pattern (see Figure 

5.6 at iteration 800). More neurons can be created by reducing the size of an (as 

shown in EPSOM Test 2) which would have the effect of reducing the overall error.  

 

 

Figure 5.10 TPSOM Test 2: The class output of the network. 

 

Figure 5.10 shows the class outputs from the arbitrary labels of both input set (upper) 

and the TPSOM (lower). Generally the ability to classify is still good; however this is 

secondary to the graphical output. If classification was the most important output 

here then the (E)PSOM should be used instead.  

5.4.2.1 Test Summary 

In this test, the TPSOM was used to find the temporal structure in a data set where 

not all the input patterns belonged to a desirable class. The TPSOM does not give a 

good graphical representation of the input space when 9% of the patterns in the input 

set (100 in a total of 1100 patterns) are noise patterns distributed randomly around 

the input space. The TPSOM, like the (E)PSOM, can still separate input classes from 

noise but this is secondary to the ability to produce a meaningful graph. This result is 

expected because the addition of noise patterns for this seven-pattern set has reduced 
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the relative importance of the desirable classes to the point that noise patterns are as 

common as input patterns. 

5.4.3  Test 3: Radar Data Set. 

The aim of this test was to see if there was any temporal structure to the radar data 

set. The parameters (Table 5.12) were taken initially from PSOM Test 9 and then 

empirically tuned such that the class output of the TSOM was similar to the PSOM 

of Test 9. For this data set, there is no known state transition matrix. Instead this test 

was to explore whether the data set did have any structure. The learning rate, br was 

found empirically. 

Table 5.12 TPSOM Test 3 Parameters. 

Parameter   Value
Node Building Parameter (an) 0.21 
Link Removal Threshold (ar) 0.1 
Learning Rate (br) 0.01 

 

Network states were recorded at 5000, 15000, 20000 and 21484 iterations. The first 

state was to show the network before it had settled down, the second iteration was 

halfway through the data set and the final state was the final state of the network. 

These were chosen empirically as the best points to show the operation of the 

network. 
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Figure 5.11 TPSOM Test 3: Network states every 5000 iterations and then finally at 21484 

iterations. 

 

Figure 5.11 shows network states at 5000 iteration intervals and the final state at 

21484. Throughout the life of the network the TPSOM fails to show any meaningful 

structure within the data. None of the network outputs have any recurring features 

that consistently reappear between network snapshots. This is reflected in the state 

transition matrices below. 
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Table 5.13 TPSOM Test 3: State transition matrix after 5000 iterations. 

 2 3 4 5 6 7 8 
2 0.00 0.55 0.00 0.00 0.00 0.13 0.32
3 0.57 0.00 0.00 0.00 0.00 0.12 0.32
4 0.33 0.28 0.00 0.11 0.14 0.15 0.00
5 0.00 0.50 0.50 0.00 0.00 0.00 0.00
6 0.39 0.30 0.00 0.00 0.00 0.31 0.00
7 0.62 0.38 0.00 0.00 0.00 0.00 0.00
8 0.00 0.50 0.00 0.00 0.00 0.50 0.00

 

Table 5.14 TPSOM Test 3: State transition matrix after 21484 iterations (final state). 

 2 3 4 9 6 7 14 
2 0.00 0.32 0.00 0.00 0.19 0.22 0.27 
3 0.49 0.00 0.00 0.00 0.00 0.00 0.51 
4 0.40 0.40 0.00 0.10 0.00 0.10 0.00 
9 0.00 0.50 0.50 0.00 0.00 0.00 0.00 
6 0.46 0.25 0.00 0.00 0.00 0.18 0.11 
7 0.48 0.24 0.00 0.00 0.16 0.00 0.13 
14 0.54 0.46 0.00 0.00 0.00 0.00 0.00 

 

Table 5.13 and Table 5.14 show state transition matrices for two time snap shots of 

the TPSOM. The time index of 5000 (Table 5.13) was chosen for the first snapshot 

because it would give the TPSOM enough time to settle. None of the values in Table 

5.13 are very large (>0.6) which would suggest that there is little or no order to the 

patterns. Table 5.15 shows the final state of the TPSOM’s state transition matrix. 

Columns 2 and 3 show a list of very high values, which would suggest that classes 2 

and 3 are the most popular. However, this does not show temporal structure as such, 

just the statistical density of the classes concerned. 
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Figure 5.12 TPSOM Test 3: Recognition Error over time. 

One might be led to conclude that the TPSOM was not functioning correctly during 

its operation. Figure 5.12 shows the recognition error over time for the operation of 

the network. The recognition error given here is greater than that produced by the 

PSOM. This is expected as only one neuron is used to represent a class or state rather 

than having 3 or more as with the PSOM. However, beyond the general larger trend, 

the error really is not that oscillatory or as large as would be expected if the network 

was not learning and continually building new neurons. 
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Figure 5.13 TPSOM Test 3: The number of classes (states or neurons) over time. 

 

Figure 5.13 shows the number of classes during the operation of the network. As 

each class is represented by one neuron and each state is one class, neuron, class and 

state are effectively identical for the purposes of this test. Given that there are 4 

classes within the input set, a maximum of 11 for the number of classes could be an 

indicator of the network failing to classify. However, these additional classes may 

not have lasted in the network or become states that are held in the network but never 

accessed, and so no such conclusion can be drawn. 
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Table 5.15 TPSOM Test 3: The relationship between the input class number and the TPSOM 

class number. Only significant rows shown. 

 Input Set Class Number 
 1 2 3 4 

0 7 0 1 0
2 12859 0 2 1
3 0 0 6172 0
4 6 0 0 621
6 472 1 0 0
7 278 0 0 0

10 0 0 26 0
12 0 0 21 0
14 0 938 0 0TP
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15 0 53 1 0
 

Table 5.15 shows the relationship between the input class number and the TPSOM 

class number. Only significant rows are shown for the sake of brevity. As can be 

clearly seen, the TPSOM has classified the classes well. Of input classes 1 and 2, 

only 5% of the patterns were wrongly classified and a very small proportion of 

classes 3 and 4 were consistently mis-classified. This suggests that the classes were 

classified properly on the whole. 

 

5.4.3.1 Test Summary 

In this test the TPSOM was used to investigate the temporal properties of the radar 

data set. The network was found to classify well, with a low recognition error and a 

consistency of input pattern classification. However, no temporal pattern was found 

in the data. This was not entirely surprising as radar data does not have any temporal 

structure where one class (radar source) follows another. For this to occur, radar 

sources would need to be synchronised with each other such that they arrived in an 

ordered pattern at the point where the pulses are collected. Such an occurrence would 

be a coincidence. During the test, it was noticed that the same neuron would be 

called as the focus many times consecutively. 
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5.4.4  Test 4: Static Markovian Chain  

A static Markov Chain is one where the probabilities connecting the states do not 

change during the operation of the system. The input state for the network is 

generated from a State Transition Matrix. The data is generated in the following 

manner: 

  

1. Choose a state starting point from all the states available. This is the state that 

will represent the first input to the network – chosen arbitrarily. 

2. For each state, there is a corresponding vector which is the same size as the 

input to the TPSOM. This vector represents a point in the input space and 

whose elements are either 1 or 0. 

3. Before being applied to the TPSOM, the input is perturbed by 20% random 

noise such that the input to the TPSOM remains between 0 and 1. 

4. Apply the input to the network. 

5. Generate a random number between 0 and 1. 

6. Using the state transition matrix, use the random number to generate the next 

state. 

7. Use this state and go to step 2. 

 

For this test the Markov Chain Source State Transition Matrix is given by Table 

5.16. 

Table 5.16 TPSOM Test 4: The Markov Chain Source State Transition Matrix. 

 0 1 2 3 4 
0 0.00 1.00 0.00 0.00 0.00
1 0.00 0.00 0.40 0.60 0.00
2 0.00 0.00 0.00 1.00 0.00
3 0.00 0.00 0.00 0.00 1.00
4 0.20 0.20 0.60 0.00 0.00
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This State Transition Matrix can also be visualised as a state graph as in Figure 5.14. 

 

Figure 5.14 TPSOM Test 4: The Markov Chain Model pictorally. 

 

Although the model displayed in Figure 5.14 is accurate, it does not best show the 

structure of the network as the link lengths do not correspond to the values displayed 

by them. Ideally large numbers should be short links and small numbers would be 

long links. This is so that states that often follow each other are kept close together. 

This is almost impossible to achieve by drawing, especially as the number of states 

increases. The TPSOM will organise this network using its layout algorithm to 

produce a satisfactory arrangement for the network. 

 

The data generated by the Markovian Source is stochastic and bounded between 0 

and 1. This is achieved by first checking the value of the output vector that, before 

noise, is either 0 or 1. A random value is generated and biased depending on the 

amount of noise required (in this test, 20% noise was used, thus the random value 

was between 0 and 0.2). If a value in the output vector is 1, then the random value is 

subtracted from the output vector. If the value in the output vector is 0, then the 

random value is added. The upshot of this method is that the output is always 

bounded between 0 and 1. The pre-noise classes used for this test were taken from 

the standard classes above. 

 

The TPSOM Parameter an was taken from EPSOM Test 1, the learning rate being 

determined empirically. The aim of the test is to see if the TPSOM can create a state 

transition matrix similar to that which is held in the Markov Source. As the Markov 

Source is static, there is no requirement for states to be removed and thus the 

threshold for link removal, ar, is set to 0. By doing so, links of value less than 0 can 

Robert I. W. Lang   149



  Technique Evaluation 

only be removed. As links are bounded between 0 and 1, this is impossible. This 

allows the network to settle to stable values without removing any links. Before 

testing dynamicity, it is necessary to confirm that the static system can be captured. 

The test parameters are summarised in Table 5.17.  

 

Table 5.17 TPSOM Test 4 Parameters. 

Parameter   Value
Node Building Parameter (an) 0.29 
Link Removal Threshold (ar) 0.01 
Learning Rate (br) 0.0 

 

 

Figure 5.15 TPSOM Test 4: The recognition error over time. 

 

As shown previously, the speed at which the TPSOM’s recognition error (Figure 

5.15) becomes stable (models only the noise) is small compared to the time that is 

required to organised the probabilistic links. This speed of convergence is mostly to 

do with the nature of the PSOM rather than the TPSOM. Altering those parameters 

that the TPSOM shares with the PSOM will have similar effects as for the PSOM. 

Further comparison is provided later. 
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Figure 5.16 TPSOM Test 4: The class output from the actual class labels (top) and those 

produced by the TPSOM (bottom). 

 

As the class numbers for both the TPSOM and the Markovian Source are arbitrary, 

the numbers given on the Class Label graphs (Figure 5.16) are purely for reference. 

It can be seen that the TPSOM has classified correctly by comparing the two graphs 

in Figure 5.16. If the pattern of dots in one line of the TPSOM output (bottom graph) 

is the same as the pattern in a line from the Markovian Source (top graph) then it can 

be said that the TPSOM is classifying correctly. In this manner, it can be seen that 

TPSOM Class 6 (top line of bottom graph) is equivalent to Markovian Source Class 

0 (bottom line, top graph). The classes can be matched by monitoring the TPSOM 

output and comparing the class number shown to the network and the class number 

assigned by the network. By doing so, one can see that the classes match as follows: 

 

Table 5.18 TPSOM Test 4 class associations 

Markovian Class TPSOM Class
0 5 
1 1 
2 2 
3 3 
4 4 
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Figure 5.17 TPSOM Test 4: The final network state after 600 iterations. 

 

Table 5.19 TPSOM Test 4: State transition matrix. 

 1 2 3 4 5 
1 0.00 0.37 0.63 0.00 0.00
2 0.00 0.00 1.00 0.00 0.00
3 0.00 0.00 0.00 1.00 0.00
4 0.17 0.63 0.00 0.00 0.20
5 1.00 0.00 0.00 0.00 0.00

 

The TPSOM consistently matched one class to another after approximately 40 

iterations. Figure 5.17 shows the final state of the graph. As the graph structure did 

not change after the first 40 iterations, no other network states were recorded. The 

structure is similar to that shown in Figure 5.14. By replacing the class numbers with 

those given in Table 5.18, one can see that the structures are identical. Clearly visible 

in Figure 5.17 but not visible in Figure 5.14 is the cyclic substructure of states 

4→2→3 which occurs more often than the rare states 1 and 5. The layout of the 

TPSOM makes this structure visible on inspection, not easily achieved 

diagrammatically.  

 

As the source of the input patterns is a State Transition Matrix, it is possible to create 

a measure of error between the TPSOM State Transition Matrix and the input 

equivalent. This is achieved by first calculating the difference between corresponding 

entries in the State Transition Matrices of input and the TPSOM and then summing 

the absolute values in this matrix. This sum is a measure of error between the 

matrices. This is only possible after the matrices are rearranged (the arbitration 

process that matches up the class names) and will not possible for matrices of 
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differing sizes. This case could arise if the TPSOM used more neurons (states) to 

represent the input space than was necessary. Snapshots for the TPSOM State 

Transition Matrix were taken at 100, 200, 300, 400 and 600 iterations. The State 

Transition Matrix Error is given below (Table 5.20). 

 

Table 5.20 TPSOM Test 4: State Transition Matrix Error over time. 

Time STM Error
100 0.69
200 0.54
300 0.34
400 0.18
600 0.12

 

As Table 5.20 shows, the error between the input State Transition Matrix begins 

large and then reduces to a small and acceptable value, given that the network has 

only been used for 600 iterations. This process of error extraction cannot be 

automated as the matrix transformation required to compare the two matrices 

requires an observer. It is expected that this error tends to 0 at time infinity. 

 

5.4.4.1 Test Summary 

In this test, the output from a static Markovian Chain source was used to test the 

TPSOM ability to find temporal structure from a Markovian chain. The TPSOM was 

used to generate a state transition matrix which could be compared to the Static 

Markov Chain. It was found that the TPSOM could generate a satisfactory graph 

without any prior knowledge of the temporal structure of the data. The only a-priori 

data that the TPSOM was given was clustering information concerned with splitting 

up the input classes sensibly (as specified at the start of this section). The error 

between the TPSOM state transition matrix and the Markov Chain source state 

transition matrix was found to decrease as more examples were shown and it is 

hypothesised that the error would tend to 0 at time infinity. 
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5.4.5 Test 5: Dynamic Markov Chain 

The dynamic Markov chain used here is simulated by two static Markov Chains with 

equal number of states between which the model switches. It is assumed that if the 

TPSOM can deal with such a discontinuity, than a more gradual change would also 

be possible. In this case, only the state transition matrix of the input is changed, the 

classes remaining the same. This is not a requirement of the network, but improves 

the clarity of the test. The test was conducted by having two State Transition 

Matrices and an integer switch time index. Before this time index (number of 

iterations), State Transition Matrix 1 is used as the input to the TPSOM, after this 

State Transition Matrix 2 is used. The State Transition Matrices (Table 5.21 and 

Table 5.22) have different elements; non-zero entries in the first matrix do not exist 

in the second matrix and vice versa. This should show the TPSOM changing its 

structure completely, without having to relearn any classes. 

 

Table 5.21 TPSOM Test 5: State Transition Matrix 1. 

 0 1 2 3 4 
0 0.00 1.00 0.00 0.00 0.00
1 0.00 0.00 1.00 0.00 0.00
2 0.00 0.00 0.00 1.00 0.00
3 0.00 0.00 0.00 0.00 1.00
4 1.00 0.00 0.00 0.00 0.00

  

Table 5.22 TPSOM Test 5: State Transition Matrix 2. 

 0 1 2 3 4 
0 0.00 0.00 0.00 0.00 1.00
1 0.00 0.00 0.00 1.00 0.00
2 1.00 0.00 0.00 0.00 0.00
3 0.00 0.00 1.00 0.00 0.00
4 0.00 1.00 0.00 0.00 0.00

 

The parameters for this test are given in Table 5.23. The crossover point for the 

change from State Transition Matrix 1 to 2 was arbitrarily set to 500. The output 

classes were not perturbed by noise because the aim of the test was to show the 

manner in which the TPSOM operates on this type of dynamic Markov chain, not an 

investigation of its noise rejection properties in such a scenario. 
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Table 5.23 TPSOM Test 5 Parameters. 

Parameter   Value
Node Building Parameter (an) 0.29 
Link Removal Threshold (ar) 0.01 
Learning Rate (br) 0.0 

 

The TPSOM responded well to the sudden change in temporal structure. New links 

were forged and old links were slowly phased out and then removed. Snapshots of 

the output graph and TPSOM state transition matrix were taken at intervals chosen 

before and after the switching times. The Recognition Error for the TPSOM was 

understandably small after the initial expansion period. This is because the input 

patterns were not corrupted by noise. As the Recognition Error was close to 0 for all 

of the network’s operation, graphical displays of the results show very little. 

 

Table 5.24 TPSOM Test 5: The relationship between the input class number and the TPSOM 

class number for the dynamic Markov Chain data set. 

 Input Set Class Number 
 0 1 2 3 4 

0 1 0 1 0 1
1 0 1 0 1 0
2 1 0 1 0 0
3 0 0 0 125 0
4 0 0 0 0 125
5 125 0 0 0 0
6 0 124 0 0 0TP
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7 0 0 124 0 0
 

Table 5.24 shows the relationship between the input class number and the dynamic 

Markov chain input. This is summarised in Table 5.25. This summary is possible as 

there were only a few misclassifications. These misclassifications occur when the 

network is initially organising its structure. 
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Table 5.25 TPSOM Test 5: The overall relationship between Markov Class and TPSOM class 

Markovian Class TPSOM Class
0 5 
1 6 
2 7 
3 3 
4 4 

 

 

Figure 5.18 TPSOM Test 5: The network graphs at 125, 525 and 630 iterations. 

Table 5.26 TPSOM Test 5: State Transition Matrix after 125 iterations. 

 1 2 3 4 5 6 7 
1 0.00 1.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 1.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 1.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00 1.00 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 1.00 0.00
6 0.00 0.00 0.00 0.00 0.00 0.00 1.00
7 0.00 0.00 1.00 0.00 0.00 0.00 0.00
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Table 5.27 TPSOM Test 5: State Transition Matrix after 630 iterations. 

 1 2 3 4 5 6 7 
1 0.00 1.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 1.00 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.00 0.00 0.00 1.00
4 0.00 0.00 0.00 0.00 0.00 1.00 0.00
5 0.00 0.00 0.00 1.00 0.00 0.00 0.00
6 0.00 0.00 1.00 0.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 1.00 0.00 0.00

 

Figure 5.18 shows the visual output of the network at 125, 525 and 630 iterations. At 

125 iterations, the network has settled down with the first Markov Chain. Neurons 1 

and 2 are associated with initial classes that are only seen once in the operation of the 

network. Long chains like this are a known feature of the algorithm as there is no 

way of deleting neurons without inbound links that are not directly connected to the 

focus. The probabilities of these links are 1.0, or 100%. The State Transition Matrix 

is not included here as it is identical to the input State Transition Matrix. The Markov 

Chain matrix changes after 500 iterations. 

 

At 525 iterations, the network has seen the new structure for 25 iterations and has 

created the new links to account for this change in structure. For the next 100 

iterations, the network will strengthen the new links while decreasing the importance 

(probability) of the old links. 

 

After 630 iterations, the network has taken on a new structure. Although similar in 

appearance (a ring with a short chain off one side), the structure of the network is 

different. Note that the order of the neurons within the ring has changed. This new 

structure corresponds to the State Transition Matrix of the second Markov Chain 

source. The error between the input and TPSOM State Transition Matrices at 

iteration 125 and 630 is zero. This shows that the network is representing the two 

different structures correctly. 

 

5.4.5.1 Test Summary 

This test has demonstrated the TPSOM’s ability to represent a Markov Chain model 

with a discontinuity during its operation. The TPSOM copes with this change by first 
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creating new links required for the new structure before slowly reducing the strength 

of the original structural links. Approximately 130 iterations after the Markov Chain 

input’s State Transition Matrix was changed, there was no difference between the 

TPSOM’s structure and the new input system structure. This signifies that the 

network is able to change its own topology to meet the change in topology of the 

input set. 

5.4.6 Test 6: The Effect of the Node Building Parameter 

This test is to show the effect of the Node Building Parameter, an, on the operation of 

the network. It is expected that for low values of an, the network will grow very 

quickly and many classes will be formed. Long chains will be created as each input 

pattern will not be classified as an existing pattern. This will lead also to very large 

class association as a single class will be represented by many classes in the TPSOM. 

Large values of an will create small networks where a few neurons represent many 

different classes. This will lead to small class association matrices but poor 

classification. The data set used for this test is the 7 pattern Multivariate Artificial 

data set (Figure 5.1) in order to allow comparison with earlier tests. The parameters 

used in this test are shown in Table 5.28 and are based on the TPSOM Test 1’s 

parameters. 

Table 5.28 TPSOM Test 6 Parameters. 

Parameter  Value 
Node Building Parameter (an) 0.01-0.6
Link Removal Threshold (ar) 0.1 
Learning Rate (br) 0.025 
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Figure 5.19 TPSOM Test 6: The effect of the node building parameter on the Recognition Error. 

Figure 5.19 shows the effect of an on the Recognition Error of the network. For small 

values of an, the network creates many neurons and so the input space is well 

covered with neurons. Therefore, it is very likely that the TPSOM will have a neuron 

that represents the given class, leading to a low recognition error. As an increases, the 

smaller number of neurons in the network leads to individual neurons covering more 

and more of the input space. This continues until the error is very large. The 

instantaneous error value only quantifies errors in recognising a particular pattern 

and does not reveal whether the network has captured the temporal structure (shown 

later). In this respect, the TPSOM network performs in a similar manner to the 

(E)PSOM. This is because the algorithms use an in a similar manner: for the creation 

of new neurons. 
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Figure 5.20 TPSOM Test 6: The effect of the Node Building Parameter on the last class seen 

(Number of states). 

 

Figure 5.20 shows the effect of an on the last class seen in the network over time. 

When the results are displayed in this way, the last class seen is equivalent to the 

numbers of different classes (states) used by the network. For small values of an, the 

network creates many classes and vice versa for large values. At an values of 0.28 

and 0.18, two ridges can be seen. These ridges represent a situation where the 

TPSOM is unable to classify the input initially. The network takes time to reach a 

stable state; when it does, it operates correctly and contains the correct number of 

classes, their labels being of high values. These high values suggest that the network 

expanded and contracted its topology many times during the learning process, 

requiring a new class number for each expansion. 

 

From a perspective of class association matrices between input and the TPSOM, 

small values of an create sparse matrices with several TPSOM classes representing 

one input class. For values of an between 0.2 and 0.4 the TPSOM yields matrices 

much like that in  

Table 5.3. Table 5.29 shows the relationship between the Input set class number and 

the arbitrary class number assigned to the class for an an value of 0.59. At this large 
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value, the TPSOM classes many different input classes as the same class. The three 

persistent, common classes, input set class numbers 1,2 and 3 (columns 1,2 and 3) 

appear to be classified well by TPSOM. For example, input class 2 (column 2) is 

represented by TPSOM class 2 (row 2), which has only 1 misclassification with 85 

correct classifications. For all the other classes (both rows and columns) there are 

many column entries for a given row. This shows that the TPSOM incorrectly 

classified different input classes as one TPSOM class, highlighting a breakdown in 

the correct functioning of the network at high values of an. 

 

Table 5.29 TPSOM Test 6: The relationship between the Input set class number and the class 

number provided by the TPSOM for an an of 0.59. 

  Input Set Class Number 
  0 1 2 3 4 5 6 7 

0 1 0 0 0 10 6 8 237 
1 0 236 1 1 59 0 126 0 
2 0 0 85 0 6 0 0 0 
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3 0 0 0 86 0 35 103 0 

 

5.4.6.1 Test Summary 

This test has shown that for small values of an, the network has a very small 

Recognition error but uses many neurons to achieve this. Classification is not 

possible at this end of the scale due to the huge number of neurons sharing similar 

points in the input space. As an increases, the TPSOM begins to operate correctly 

until a value of approximately 0.35 is reached, at which point the ability for the 

TPSOM to distinguish between classes begins to decrease. At very large values of an, 

the network classifies different input classes as the same class, which is undesirable. 

5.4.7 Test 7: The Effect of the Learning Rate 

This test shows the effect of the Learning Rate, br on the operation of the TPSOM. 

The learning rate acts in a similar manner to the Link Ageing Parameter (ar) in the 

(E)PSOM algorithms. The learning rate controls the effect of each pattern on the link 

probabilities. A high learning rate (near to 1.0) will mean that the effect of a given 

pattern is quite large and vice versa. The network parameters used for this test can be 

found in Table 5.30. 
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Table 5.30 TPSOM Test 7 parameters. 

Parameter  Value 
Node Building Parameter (an) 0.29
Link Removal Threshold (ar) 0.1
Learning Rate (br) 0.001-1.0

 

 

Figure 5.21 TPSOM Test 7: The effect of the Learning Rate on the Recognition Error. 

Figure 5.21 shows the effect of br on the recognition error of the network. The 

operating range of the network is quite small (between 0.0001 and 0.05). This 

suggests that the TPSOM algorithm is not robust with respect to its learning rate. 

Beyond this, the network over-fits the input data and coherent structures are not 

created. Values of 0 cause the network to reject the input pattern and are therefore 

not considered. 
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Figure 5.22 TPSOM Test 7: The effect of the Learning Rate on the number of classes within the 

TPSOM. 

 

Figure 5.22 shows the effect of br on the number of classes within the TPSOM at any 

given time. For small values of br (< 0.08) the effect of each input is small, and over-

fitting does not occur. The number of classes remains small and representative of the 

input set. As br increases beyond this value, each new input has a significant effect 

on the network which leads to old links being broken. In many cases, neurons 

associated with classes have no incoming links and are removed from the network. 

This volatile behaviour does not allow the network to retain information between 

presentations of different patterns from the same class. 

 

The class association matrices for small values of br are similar to those given by 

Table 5.6, showing correct classification. As br increases, the class association 

matrices become very large as the network struggles to classify the patterns from 

classes that occur infrequently (either regular or random). The persistent classes are 

classified correctly until br reaches a value of 0.8. At this point, the two iterations 

between each presentation of this class are too an interval long for the network to 

retain the information. 
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5.4.7.1 Test Summary 

This test showed the effect of the Learning Rate (br) on the operation of the network. 

It was shown that br controls the effect of a given pattern on the network. A small br 

means that each pattern shown to the network has little effect on the probability of 

the links connected to the focus. A large value of br means that the network over-fits 

by altering the probability of the links to such an extent that links are broken and 

neurons associated with persistent classes are removed. The operating range of the br 

parameter was found to be between 0.001 and 0.05. This is a much smaller range 

than for its (E)PSOM counterpart (the Link Ageing Parameter) on a similar data set 

(PSOM Test 4). 

5.4.8 Test 8: Plain English Vowel Pairs 

The aim of this test to create a topology based on pairings of vowels as shown in 

Section 5.3. The letters were then exchanged for their numerical position in the 

alphabet (A=1, E=5, I=9, O=5, U=21). Gaps in the text were represented by ‘0’. 

These numbers were shown to the TPSOM. 

 

For this test alone, the TPSOM required two alterations: 

1. A node must be able to link itself to represent instances of the same vowel 

twice. This was achieved by a circular link which starts and ends at the same 

node. 

2. The network needed to deal with character spaces. When a character space is 

presented to the network, the knowledge of the previous character seen is lost 

and the next character presented is dealt with as if it was the first character 

seen. This allows the character pairs to be distinct from each other. 

 

Table 5.31 TPSOM Test 8 Parameters. 

Parameter   Value
Node Building Parameter (an) 0.4 
Link Removal Threshold (ar) 0 
Learning Rate (br) 0.005 

 

The Node Building Parameter (an) was set arbitrarily. This could be easily set 

because it was known that the minimum distance between any two classes is 1. A 
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link removal threshold (ar) of 0 was set to allow the network not to forget any of the 

text. The intention was for the TPSOM to represent the whole 9 chapters, rather than 

retain a representation of the most recent chapters. The optimal learning rate of 0.005 

was found empirically (discussed below). 

 

Figure 5.23 shows the TPSOM network representing the vowel pairs for the first 9 

Chapters of Great Expectations. Each node is labelled with the vowel it represents 

for simplicity. The corresponding state transition matrix is given in Table 5.32. This 

state transition matrix should be compared to Table 5.1, which shows the correct 

values for the state transition matrix.  

 

By inspection, it can be seen that the TPSOM has not managed to replicate the state 

transmission matrix shown in Figure 5.1. For example, the transition between E to E 

in Table 5.1 is 0.342, however, the TPSOM has shows this link as 0.0 in Table 5.32

 .  

 

Figure 5.23 TPSOM Test 8: The TPSOM representing the vowel pairs for the first 9 chapters of 

Great Expectations. 
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Table 5.32 TPSOM Test 8: State Transition Matrix. 

 A E I O U 
A 0 0 1 0 0

E 1 0 0 0 0

I 0 0.36 0 0.581 0.059

O 0 0 0 0 1

U 0.245 0.274 0.289 0.192 0

 

The TPSOM diagram (Figure 5.23) shows that, at some point, there were instances 

of some vowel pairs but not regular enough for the TPSOM to represent that 

knowledge. These links are set to zero and should be ignored; normally, they would 

be removed but this features was switched off to facilitate the representation of a 

large, static dataset. While tuning the learning rate (br), a brief investigation of its 

effects was performed. For large learning rates (between 0.001 and 0.1), the network 

would only satisfactorily represent the most recent vowel pairs rather than the pairs 

of the entire dataset.  

 

Those links that become zero, perhaps due to being infrequent in part of the text, will 

never move from being zero. This is because the link length is a multiplicand of the 

alteration value. This can be counter-acted by having the links removed and then 

replaced by new ones. This is the role of the link removal process; however, using 

this system reduces the network’s ability to classify over a large number of iterations. 

 

For small learning rates, the link probabilities do not change much from the initial 

link probabilities. Therefore, for very small values (such as 0.000001), training does 

not change the values from their initial node-built levels, the values of all the links 

being identical. 

 

The reason for this problem is the coarse way in which a new link is added to the 

given node. This coarse process has the effect of losing much of the past knowledge 

stored in the list. A solution to this problem might be an alteration in the algorithm or 

better tuning of the learning rate. 
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  Technique Evaluation 

5.4.8.1 Test Summary 

This test showed that the TPSOM could only extract the main features of Great 

Expectations by representing the probability that one vowel followed another. Many 

of the statistically significant properties of the dataset were not captured by the 

TPSOM. This test demonstrated that when the number of data points that the 

TPSOM is required to represent is large, it is unable to correctly learn the data 

distribution of the input space. This is due a combination of tuning, the coarse link 

creation and the update algorithm. Improvements might include adding a parameter 

to the strength of the link creation algorithm, giving old links greater chance of 

survival. 

 

5.5 Chapter Summary 

In this chapter the TPSOM was tested on a number of data sets. First, the TPSOM 

was tested on artificial datasets to demonstrate its operation and sensitivity to its 

parameters. Secondly, it was used to explore the Radar dataset to see if any pattern 

could be found. As expected, none was found. Lastly, it was tested on vowel pairs 

taken from a long text where the statistical properties are known. The TPSOM could 

not replicate these properties, due to the size of the dataset and the course nature of 

the learning algorithm. 
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