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4.  The Temporal Plastic Self 

Organising Map 
 

4.1 Introduction 

The PSOM (Chapter 2) extends the generic SOM by adding temporality to the links 

and allowing a network to grow and shrink through time without the restrictions of a 

2 dimensional grid. The coarse temporal information encoded implicitly in the links 

includes some temporal information about the input space but it is not easy to 

separate from the spatial information. Also, there is likely to be more temporal 

information about the order in which patterns are presented to the network that is not 

represented. 

 

In static Neural Networks, the order in which patterns are presented to the network is 

only a concern when training the network and any temporal structure found therein is 

ignored. Static Neural Networks tend to require patterns from different classes to be 

presented in rotation. Furthermore, a detriment in learning has been found if classes 

are shown in their entirety sequentially (pp.23, Haykin 1999). If shown sequentially, 

a Static Neural Network will learn the first class presented well but will not learn the 

later classes as the learning rate will have reduced. Static Neural Networks do not 

encode this information for use but use it as a preference in training methods. In 

traditional time series Neural Networks, a window of time is used to represent a 

pattern. Although this could be seen as some sort of temporal encoding, the 

temporality is within the pattern itself, not a relationship between the sequence of 

patterns and thus the Neural Network learns the time sequence as a whole, not how 

that time sequence relates to the patterns presented before and after. 

 

In many real systems, there can be much useful information stored in the order in 

which patterns arrive at the input, especially when detecting novelty. If one expects a 

process to cycle in a certain order, any change in the order is of interest to the user. A 

static Neural Network will discard this information, concentrating on the 
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classification or clustering of the pattern space. The PSOM takes some steps towards 

encoding the order of patterns, but this information is not easily retrieved from the 

network as the links encode both temporal and spatial information. 

 

The Temporal Plastic Self-Organising Map (TPSOM) attempts to solve this problem 

by encoding the order in which the patterns arrive. Once this information is encoded, 

it can be used to predict, given a class, which class is most likely to appear next. This 

can be used for classification, prediction or the detection of temporal novelty. 

Novelty, as specified before, is the arrival of a pattern that does not belong to a class 

that has been seen before. Temporal novelty is where the sequence of the classes 

being shown changes. Spatial novelty is also detected by the arrival of classes new to 

the input data set. This would be shown by the addition of neurons and links within 

the PSOM. 

 

4.2 Structure 

The TPSOM consists of neurons and links. A neuron contains a vector of equivalent 

dimension as the input space. This vector holds an example of the input space. Each 

link represents a scalar probability and a direction (from one neuron to another), 

which is a difference from the PSOM. A link, cij, connects neuron xi to neuron xj. If xi 

is the focus, the link cij is the probability that xj will be the next focus. Thus, a link 

may only connect two neurons and unlike the PSOM, has a direction. 

 

The TPSOM consists of l neurons and m links, both of which may vary over time in 

number. Each neuron, xi contains a vector which has the same dimensionality as the 

input space, E. For the sake of brevity, the neuron xi and its vector are considered one 

and the same. Thus ix E∈ . In the simplest case, two neurons (xi and xj) are connected 

by a single link, cij, of probability 1.0. The sum of the probabilities for all links from 

neuron xi is 1.0. An example network structure is shown in Figure 4.1. 
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Figure 4.1: The structure of the TPSOM, 
showing 5 neurons and 6 links. 
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4.3 TPSOM Algorithm 

The algorithm is what sets the TPSOM apart from the PSOM and its variants. The 

algorithm is simple (seen in Figure 4.2) and should be compared with the PSOM 

algorithm in Figure 2.2 (page 39). The network is initialised with one neuron that 

contains a randomly generated point in the input space. This is for implementation 

reasons, but it is removed early on if it does not represent a class in the input space. 

For each input, u, presented, the network finds the neuron that is most similar to the 

input, which is called the focus, z. Similarity is measured using Euclidean distance. If 

Initialise Network 

Accept Input 

Find focus for this input 

Is the Euclidean distance between 
input and focus greater than an?

Update the focus. Create a 
link between previous 
focus and new focus 

Alter all other links connected to the 
focus such that the sum of all links from 

the focus is 1.0 

Remove neurons by tracing back 
from the focus. 

Yes No 

Remove links less than ar

Create a neuron and 
connect it with the focus

Figure 4.2: The Temporal Self Organising Map 
learning algorithm. 
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this distance is larger than the Node Building Threshold, an, then a new neuron is 

created with the vector identical to the input. If not, then the focus is updated such 

that it is made more similar to the input. If a link between the current focus and the 

previous focus already exists, then it is strengthened using a learning rate, br, if not, 

then a new link is created from the previous focus to the current focus. A typical 

value for br is 0.01. Here, the term learning rate is used to show how much effect 

each new input has on the links of the network. For the link between last focus, y, 

and the current focus, z, the link, czj, is updated as follows: 

 

yz r yzc b cΔ = ⋅      (4.1) 

 

Once a link has been created or updated, all the other links starting from the last 

focus must be updated such that the sum of all link probabilities from the last focus is 

1. For each link, cyj, from the old focus, y, to each neuron, j, with a total of n links, 

the update is given as: 
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After this learning step, the links that are longer than the link removal threshold, ar, 

are removed. Thus: 
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The loss of this link means that the total probabilities amongst all links from the 

focus no longer sum to 1. Therefore, they are updated in a similar manner as in 

Equation 4.2. Assuming the link being removed is between neurons i and j and is 

therefore denoted by cij, and assuming there are n other links from i, such that cik is a 

link between neuron i and k, then the change in each link is given as: 
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Originally, only neurons that were without links were removed, in keeping with the 

PSOM algorithm. However, an alteration to this algorithm was subsequently 

adopted. Hindsight allows the new algorithm to be given here, although the 

reasoning behind it is included later (Section 4.4). 

  

Neuron removal is achieved by tracing back from neuron to neuron along each 

incoming link, starting from the focus. If a neuron, y, connected to the focus by a link 

cyz, is not the last focus, y ≠ z (t-1), and it has no incoming links, then it is removed. 

All links from this neuron are then removed. A neuron without any incoming links 

represents a state which cannot be reached or one that is no longer part of the input 

set. 

 

The result of the algorithm is a directed graph that self-organises into a temporal 

structure using only the input data. Given the current input, the next input can be 

found by following the link from the focus with the highest probability. 

 

4.4 Properties of the TPSOM 

The output of the TPSOM is two fold. Firstly, there is the recognition error, i.e. the 

Euclidean distance between the given input and focus. Secondly, there is the output 

graph which shows the temporal relationship between different input classes. This 

output could be used to represent systems which display Markovian-like (see below) 

processes (Grimmett and Stirzaker, 1994).  

 

A Markov Chain is a process whereby states are connected by probability values or 

distributions. Thus, the probability of a particular next state can be calculated given 

the current state. An example of this is given in the technique evaluation (Chapter 5). 

As the graphical output of the TPSOM is similar to a state transition diagram, the 

structure of a network can be represented by a state transition matrix. In this manner, 

a TPSOM neuron is equivalent to a Markovian state. This is desirable as it is 

temporal (or state) information that the TPSOM is attempting to capture from the 

system. A state transition matrix is square, each row representing the current state 

and each column representing each possible next state (Equation 4.5). The element pij 
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is the probability that the next state will be j given that the current state is i. Values in 

the matrix are probabilities and each row sums to 1 (Equation 4.6).  

 

 

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

s

s

s s s

p p p
p p p

P

p p p s

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (4.5) 

where 
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This matrix allows the tracking of the probabilistic structure of the network. 

Previously, the only error measure that was useful was the Euclidean distance 

between a given input, u, and the focus, z. However, for a given model, of known 

transition matrix, P , one can calculate the model error, em, between P and the 

network’s transition matrix, P (Equation 4.7). 

 

 me P P= −  (4.7) 

 

This error can be used to measure how well the TPSOM tracks the given model, 

producing an error over time.  

 

Although the TPSOM works with Markovian Chains, there are a few distinct 

differences with existing algorithms, such as: 

 

 Markovian processes can be non-stationary. This means that the contents of 

the state transition matrix – representing the probability of a transition from 

one state to another – can change over time. Most typical Markovian 

techniques assume that this matrix is static. 

 No prior assumption of states. Most Markovian techniques assume the 

number of states in the system. As the TPSOM adds neurons to represent 
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states, there is no need to assume how many states will be required, which is 

similar to estimating topology structures in Neural Networks. 

 Non-Markovian statistical processes may be represented by a TPSOM. This 

is because a Markovian process assumes that the number of states is fixed and 

that the probability between two states is static. 

 

It should be noted that although the theories within the field of Markovian dynamics 

presented here are well established, the work presented here arrived at a similar point 

through the slight alteration of the PSOM.  

i

Figure 4.3: A typical TPSOM layout before link 
removal. Assume that link cij is approaching removal 

(cij  ≈ ar). 

cij 

 j 

i

 j 

Figure 4.4: After the removal of link cij. This 
would occur if the other link from i approached 1. 

 

Another property of the vanilla TPSOM algorithm is that some neurons are never 

removed. This is because neurons are only removed when all the links associated 

with that neuron are removed. It is quite possible that the following situation can 

occur: 

  

Figure 4.3 and Figure 4.4 show a situation where the link cij has been removed. After 

the link removal, there is no method for the link from j to be altered as this would 

require the state j to be excited. Assuming that state j is no longer excited by the 

system providing the input, then the link from this neuron would not be altered and 

the neuron would remain in the system. It is undesirable to have neurons representing 
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states that are no longer part of the input state. Therefore, a new neuron removal 

criterion is required for the TPSOM. 

 

One possible solution is that a neuron is removed if no links lead to it. Intuitively, 

this suggests that states that can not be excited given the current graph are to be 

removed. In the above example, as soon as link cij is removed, neuron j will also be 

removed. This added rule has difficulties when the network is young and the number 

of neurons is small. Therefore, neuron removal can only be accomplished when the 

number of neurons, m, is larger than 3, an arbitrarily small value. This method is not 

suitable for one class of models, where the input system builds long chains (Figure 

4.). This is a valid system output, especially for systems with many states without 

repeating any steps. An example of this type of system can be found in a production 

line where the product goes through many states before its finish. No step is repeated 

but the state matrix is valid. However, given the above alteration to the algorithm, the 

neuron i would be removed on the first pass and then neurons along the chain would 

be subsequently removed until only 3 neurons are left. This is not entirely desirable 

for the construction of long chains or for transient systems. 

  

i 

Figure 4.5: A possible system chain. The neuron i 
represents the first neuron in the chain. 

Another possibility is to add a link age onto the links. This additional parameter 

would increment every time an input was shown to the network (on each iteration). 

When this age parameter becomes large (in comparison to some other threshold) the 

link would be removed. If a link joins the previous focus and the current focus, then 

it is set to zero. This would allow the non-cyclic chain (Figure 4.5) to exist but not 

for infinite time (as before). This system is very much like the GNG algorithm of 

Fritzke where age information is collected on the links for the purpose of removing 

them. The problem with this technique is that two more parameters are required. One 

parameter would set how much the links age with each iteration and a threshold 

parameter would set the calculation for link removal. Although the iterative ageing 

parameter could be set to 1, there is still the matter of setting the threshold. By 
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setting this parameter, one is defeating the objective of the network: to find temporal 

structures in the data without any prior knowledge. Being able to set this parameter 

would imply there is prior knowledge of the temporal structure. Temporality could 

be built into the link values themselves (creating spatio-temporal link like the 

PSOM) but this would reduce the usefulness of the resultant graph as links would no 

longer sum to 1. 

  

Another possible solution is to use a self-tuning process to set the value of a 

threshold. The smaller the threshold, the more rapidly links will be removed, the 

larger the threshold, the more slowly links will be removed. By setting a desirable 

number of links, the ageing threshold parameter becomes a function of this number. 

Intuitively, it is much more viable to set a desirable number of links as this value can 

be determined from hardware or operational considerations. There is no external 

imposition on the temporal constructions. 

 y 

 z 

 k 
 cyz 

 ckz 

Figure 4.6: An example of the focus triggering a scan 
of the incoming links. Here, neuron k would be 

removed. 

 

The final possible solution (and the one chosen) uses the focus, z, to trigger a scan of 

incoming links. After all the other link updates for the new focus have been 

completed, the algorithm would look back along the links that lead to the focus 

(except the one that has just been updated). If y is the last focus, then a neuron k 

which has a link ckz (where k ≠ y ) can be checked for incoming links (c*k). If this 

neuron does not have any incoming links, then it can be removed. Figure 4.6 shows 

an example using the previous notation. In this example the new focus, z, has two 

input links (cyz and ckz) and one output link. As cyz was the link that was just updated, 

neuron y is not checked. As neuron k has a link to the current focus (ckz) it is 

examined for incoming links. As neuron k has no incoming links, it would be 

removed from the network. 
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There are instances where this algorithm would not work. Figure 4.7 shows a 

network structure that consists of two groups that have been separated by the input 

process. Group A is still a functioning group and Group B consists of neurons that 

represent states that are no longer part of the input set. This could happen if the two 

groups were initially linked and a heavy bias to the states in Group A severed the 

links. In this case, the neurons in group B would never be investigated as none of the 

links travel back from group A to group B. Given that group A consists of all the 

active foci, a link is required from group B to group A for the removal process to be 

triggered. Although this problem exists, it would be rare and easily detected by a 

separate algorithm that would remove neurons based on how often the state is 

visited. Another situation where neurons will remain in the network even after the 

state has been removed is in the construction of long chains. Figure 4.3 shows a case 

for which a long chain has been created. Here, neuron k represents a state that is no 

longer present in the system. As it is not directly connected to the focus, it cannot be 

removed from the network.  

  

This method of neuron removal is preferable to the others as it does not require any 

threshold, will allow systems to grow from 1 neuron without removing any neurons 

early on, will allow the creation of long chains and is computationally inexpensive: 

only those neurons connected directly though unidirectional links are investigated for 

removal. Perhaps the best solution would be to create a hybrid technique consisting 

of the ones presented here and using the best qualities of each algorithm to remove 

neurons in different situations. Difficulties would arise in determining which 

Figure 4.7: Two groups of neurons. Group A is a group 
that is now persistent in the network. Group B consists of 

states that are no longer produced by the system. 

Figure 4.3: A long chain is constructed, neuron k 
represents a state that is no longer part of the input 

system. 

z 

 y
k 

A B
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algorithm to use and whether removing such neurons as k in Figure 4.3 is actually 

desirable. 

 

The resulting structure of the TPSOM can be used to predict the next state of the 

input environment. This is achieved by knowing the current focus in the network and 

then analysing the link from the focus. The link with the highest probability leads to 

the next most likely state in the input environment. Temporal novelty, a change in 

the order of events, is detected by the network by the addition of new links or 

neurons.  

4.5 Chapter Summary 

This chapter has presented the Temporal Plastic Self Organising Map (TPSOM) 

Neural Network. This alteration to the PSOM algorithm (Chapter 2) allows the 

TPSOM to represent temporal input systems by constructing Markov-like chains. A 

TPSOM can be used to predict the next state, classify the current state and detect 

changes in the order of presentation (temporal novelty). 
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