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7.  Conclusions 
 

7.1 Further Work 

This section deals with the areas of work that were outside the scope of this thesis 

but are still noteworthy to give the reader an insight into the direction this research 

might take. 

 

There are three ideas presented here: 

1. Further investigation into the PSOM family. Exploration into the effects of 

different types of non-stationary class (such as overlapping classes) on the 

networks. 

2. Self Tuning Plastics (STP). The aim of STP is to allow the PSOM and TPSOM to 

set their own parameters given changes in the input space. This would be 

achieved by the user setting a more intuitive criterion (such as desired error), 

rather than requiring prior information regarding the spatial and temporal 

distributions of the data. Investigations could be carried out into the types of 

dynamic system that would work well with STP and those that were not suitable 

(such as rapidly changing systems).  

3. Artificial Viruses and Immune Systems. These are methods of forcing novelty or 

stability into the network by alteration of the topology such that the network is 

perturbed. The benefits of these additional algorithms are the removal of the 

redundant neurons and the removal of stable states. This would be a benefit in 

systems where the (E)PSOM has represented the class as two stable neurons 

groups. Only by linking the groups or removing one group can this situation be 

rectified. 
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7.1.1 Further investigation into the PSOM family. 

To improve understanding of the PSOM family, the following investigations are 

suggested. 

 

1. Overlapping Classes. A new dataset could be created in which outliers from 

some of the classes overlap with patterns from other classes. It is 

hypothesised that the PSOM would create two different classes that would be 

joined together with long links. The class labels of the neurons on the edges 

of this structure will be likely to oscillate between the two class numbers. 

Given that the PSOM has a sharper neighbourhood cut-off, compared to the 

smooth EPSOM neighbourhood, it would be expected that the PSOM would 

break the classes apart quicker. This is not necessarily desirable as a faithful 

representation of the input space may not be wanted. 

2. Slow Moving Classes. A slow moving class is a class that moves in the input 

space in such a manner that it is still recognisable as the same class. Many 

classes in the real world experience this drift, normally due to physical 

properties. One example of this drift is in mechanical sensors where gradual 

wear records data differently. In radar, a slow drift may be caused by a 

changing of the aspect of the object that is being detected (such as an aircraft 

rolling). An investigation into the highest speed of motion that the algorithms 

could track would be useful. For the PSOM family, this speed is likely to be 

some fraction of the Node Building Parameter (an). As an decreases, the 

quickest speed at which the PSOM family can track is also likely to decrease. 

Beyond this highest speed, the fast moving class is likely to be seen as a new 

class, instead of being tracked as a known class and hence the PSOM family 

would detect it as novel. 
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7.1.2 Self Tuning Plastics 

Self Tuning Plastics (STP) is the name given to methods of allowing the plastic 

networks presented to set their own parameters automatically. In all of the tests 

described in Chapters 3 and 5, there was an assumption that there was enough 

knowledge about the input environment to set the network parameters accurately. 

This information must be both spatial (to set the node building parameter) and 

temporal (to set link ageing or learning rate parameters). However, one advantage of 

parameters like these is that they can work without complete information about the 

input environment. The (E)PSOM networks have been shown to be robust in the 

setting of their parameters (not sensitive to the value to which they are set) and thus 

it may be possible to derive a function whereby the parameters of the network are 

derived from some other known quantities. As shown in the tests, fluctuations of 

network parameters do not generally lead to catastrophic failure of the network but a 

graceful degradation of its operation. It is this degradation that would be measured to 

gauge the performance of the tuned parameters. 

 

The parameter setting function could operate like a cost function, whereby the size 

and recognition error of the network would be measured and used to control the 

parameters. It can be seen from PSOM Tests 2 to 4 (Chapter 3), that there is some 

correlation between the output error and the values of the node building parameter 

(an) and the link ageing parameter (ba). These relationships could be exploited to 

minimise both over time or to minimise each on a proportional basis. The latter 

would require the user to set the proportions by means of more parameters, but this is 

undesirable as the aim of STP is to reduce the number of parameters set by the user. 

The new minimisation parameters would be more intuitive to set – for example 

according to speed or memory requirements. These parameters would represent a 

compromise between accuracy and efficiency; they would also be easier to set prior 

to training from goals given by the user than by analysing the data set. 

 

One potential difficulty with such a scheme is coping with system dynamics. If the 

system to be modelled is very fast moving, then the STP network may not have 

enough example patterns from a class to gather information for parameter tuning and 

to measure the effect of the changes before the system has changed.  
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Another possible difficulty with STP is the effect of noise. In noisy systems, it is 

difficult to measure the recognition error, as the difference between novelty (the 

arrival of a new pattern) and a noisy version of an existing pattern is less 

pronounced. How the novelty threshold is set may be a difficulty for the STP 

process. 

 

The user-defined parameters of STP would be based upon parameters such as 

efficiency, which can be calculated by evaluating the size of the network with respect 

to the number of different classes held. It can be seen from the results that for 

efficiency to increase, the number of neurons and links needs to be reduced. When 

this occurs, the recognition error increases. Thus, the user will need to trade these off 

against one another. 

 

7.1.3 Artificial Virus and Immune Systems 

This section details the workings of Artificial Virus and Immune Systems (not to be 

confused with Forrest and Perelson 1991 where an immune system was modelled to 

investigate pattern recognition). These are algorithms that operate asynchronously 

with the learning algorithm and affect the topology of the network. An Artificial 

Virus is an algorithm that removes structure (neurons and links) from the network to 

perturb the network from any possible stable states. An Artificial Immune System is 

an algorithm that adds links to the network to forge new connections between 

disconnected groups of neurons representing the same class. 

 

7.1.4 Artificial Virus System 

An Artificial Virus System (AVS) is defined as an algorithm that perturbs the 

topology of the network by removing structure. Structure in this case is defined as 

neurons and links. The AVS does this asynchronously with the learning algorithm 

and thus does not interfere with the normal learning operation of the network. By 

removing structure, the network may be forced to relearn information that is lost in 

the removal or to adapt existing neurons such that patterns may still be classified 

correctly. This is forcing novelty into the network as the input set has not changed. 

Novelty occurs naturally when a pattern from a new class in the input set is presented 
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to the network, however if the network has lost information due to the AVS, then an 

old class may be flagged as a new one. Forcing novelty has two aims: 

 

1. To pull the network out of stable states.  

2. To remove redundant neurons that the learning algorithm is unable to 

remove. 

 

An example of a stable state is given in the Temporal Plastic Self Organising Map 

chapter (Chapter 4, Figure 4.7), where two groups of neurons would not be removed 

by the algorithm due to their independence. The AVS would remove structure from 

the inactive group and eventually remove the group itself. This is desirable from an 

efficiency point of view, as efficiency is compromised by having more neurons than 

is necessary. 

7.1.5 Artificial Immune Systems 

An artificial immune system (AIS) seeks to mimic the operation of a real immune 

system by repairing damage to the Neural Network, caused either by age or artificial 

viral infection. The AIS works asynchronously with the operation of the network and 

does not alter the training algorithm. The AIS seeks to build new links between 

neurons that represent the same class, but have long since been split apart. The AIS 

also serves to forge new links between groups that might be similar, working in 

opposition to the AVS by adding stability and structure to the network. An example 

of this ‘repairing’ of two separated classes is shown below. 

A B

C

D E

F

cBD

Figure 7.1 Two stable neuron groups joined by an immune system link 

 

Error! Reference source not found. shows two stable neuron groups, ABC and 

DEF. These two groups both represent the same class but are not connected. 

Currently, there is no method to connect these two groups together. An AIS could be 

used to create a new link, cBD between these two groups, correcting the topology of 

the network. The AIS is a stabilising method, and thus it might be seen as a desirable 

technique to operate continually on the network. This is not the case however, as the 
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addition of superfluous links will have a detrimental impact on the efficiency of the 

network. 

 

The AIS has two functions: 

 

1. Addition of links between neurons not already connected. 

2. Strengthening of existing links between neurons. 

 

The AIS can operate in two distinct manners: 

 

1. Global Immune System. Measures the global properties of the network (such 

as a running average of the Recognition error) and then adds or strengthens 

neurons given this global information. 

2. Travelling Immune System. The Immune System is local to an area of the 

network and ‘inhabits’ a neuron. For each iteration, the Travelling immune 

system could either create new links or strengthen existing ones, moving 

from neuron to neuron. 

 

The main advantage of the Global Immune System is that it can operate across the 

whole network and thus make a better decision about where to strengthen or create 

links. However, many comparisons will be required and this will add a large 

additional computational overhead to the operation of the network. This increase in 

computation is likely to be of the order of the square of the number of neurons as the 

immune system would compare every neuron to every other, giving n x n operations, 

where n is the number of neurons. 

 

The more favourable method is the Travelling Immune System. Once initialised 

(randomly, as a function of network parameters or as a function of time), the 

Travelling Immune system operates in a similar manner to the Travelling Virus, 

moving from neuron to neuron. Instead of removing structure, the Travelling 

Immune System adds or strengthens the structure. This immune system is not 

bounded by, but does use, the topology of the network, as it can cross to other parts 

(creating links as it moves).  
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7.1.6 Balancing Immune and Viral Systems 

The Artificial Immune Systems and Artificial Viral Systems could be used 

concurrently on the network. Although both algorithms may not be applied at the 

same time, they could be used together to perturb the network. The virus would 

remove useless links and the immune system would prospectively add links, in 

search of a better structure. It is important to note that the damage and repair to the 

network might be such that the learning algorithm cannot operate consistently, 

however. Therefore, a balance between the two is required (if both are used). It 

would be worth investigating the effects of this balance on systems that require some 

viral aid to keep efficient or immune system additions to remain connected. 

Extensive testing under different conditions and parameter settings would be 

required to determined the usefulness of immune and viral systems, either on their 

own or concurrently. 

7.2 Summary 

This thesis has focused on Dynamic Neural Networks, Networks which can alter 

their topology to adapt to datasets that are infinite and non-stationary. This kind of 

network must be able to change its entire structure over time. This can be facilitated 

by the addition and/or the removal of neurons and links. Growing networks do add 

topology, but cannot operate on unbounded input sets that occur for a theoretical 

infinite time. Pruning networks remove topology, but only as a method of increasing 

efficiency. Classic Neural Networks ignore any temporal information about the 

ordering of patterns. This can be encoded with time information (as with temporal 

Neural Networks) but is not explicit within the structure of the network. Only one 

example of a truly dynamic Neural Network has been found – the GNG-U algorithm 

that had the ability to track non-stationary datasets by adding and removing neurons. 

It performs this function in a topology preserving manner but no time information 

was encoded in the structure of the network – at any one time the network showed 

the current state of the input environment but no information regarding its past. 

 

Three novel algorithms were presented in this thesis. The Plastic Self Organising 

Map is an extension of Kohonen’s Self Organising Map. Unlike the SOM, the 

PSOM’s structure is plastic and the neighbourhood is specified by spatio-temporal 

links between the neurons. The PSOM also has the ability to add and remove neurons 
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in response to the dynamics of the input set. New classes can be classified and old 

ones forgotten. 

 

The Extended Plastic Self Organising Map replaces the discontinuous neighbourhood 

function of the PSOM and replaces it with a continuous one. By doing so, the 

Clustering Threshold of the PSOM is removed. To facilitate a stronger 

neighbourhood function, the link lengths are also scaled. Apart from these two 

characteristics, the EPSOM functions in same way as the PSOM. 

 

The major difference in the Temporal Plastic Self Organising Map with respect to the 

other two algorithms is that a link is unidirectional and represents a probability of the 

destination neuron representing the next class presented, given the origin of the link 

represents the current class. Thus, the class of the next input can be quantatively 

estimated given that the current input. This allows a Markov-chain map of the 

temporal properties of the input environment to be generated from the data directly. 

As the TPSOM is a dynamic network, it can also operate on Markov chains for 

which there is a switch between 2 state transition matrices. 

 

The operation of the three networks was studied empirically. An example, artificial 

data set was created to study the operation of the networks. This data set was non-

stationary, including a class that disappeared and one that appeared late in the 

network’s operation. All algorithms were able to classify the different classes, and 

keep a compact structure by removing neurons and links that represented classes that 

were no longer part of the input set. The (E)PSOM algorithms showed a spatio-

temporal representation of the input space that was difficult to interpret. The TPSOM 

topological graph was unambiguous. A noise data set was created using the artificial 

data set as the starting point. The (E)PSOM algorithms continued to classify well but 

the TPSOM network’s topological output was difficult to interpret due to the large 

number of links. 

 

The effects of the parameters were tested by using identical data sets and varying the 

parameter settings. It was found that the PSOM and (E)PSOM operate in a similar 

fashion, with the PSOM performing better in noise free environments and the 

EPSOM operating better in noisy environments.  
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To show a real-world problem being solved, the algorithms were evaluated using a 

radar dataset. In this data set a class is a radar source (such as an aeroplane) and each 

pattern is an instance of a radar pulse arriving at a receiver. In this case, the 

(E)PSOM correctly classified the patterns but had a tendency to split one of the input 

classes. This was because the class boundaries were of an irregular shape. Further 

investigation into the manner that the EPSOM propagates its class numbering may be 

beneficial in improving the performance under these conditions. The ability to set a 

sharp class boundary in the PSOM allowed it to outperform its extended counterpart. 

The TPSOM did not find any structure in the Radar data, but this was because of a 

lack of structure in the data, rather than ineffective operation of the network. 

 

A comparison was made between the PSOM and its closest counterpart, GNG-U 

(Fritzke, 1997), using two discontinuous classes. Both networks found the two 

distinct classes. The final GNG-U network gave a topographical representation of the 

input space but did so in many more iterations than the PSOM. Although the PSOM 

operated more quickly, its final representation was a spatio-temporal one and thus 

more difficult to interpret. GNG-U requires the user to analyse the topography to 

identify the different classes, whereas the PSOM performs this task automatically. 

 

It was found that the TPSOM could represent a Markov-like system with a state 

transition matrix similar to that of the input. The TPSOM was also shown to work on 

a Markov chain, for which the state transition matrix was changed halfway through 

the operation of the network. The network topology changed smoothly and adjusted 

to the new input system. Classic Markov chain structures are static, but this result 

indicates that the TPSOM may be used to identify systems that are dynamic Markov 

structures. An example would be a passage of music that follows a sequence during a 

verse but then changes to a different sequence for a chorus. 

 

Vowel pairs from Charles Dickens’ Great Expectations were used to show the 

TPSOM operating on a real dataset. In this case, it represented the main statistical 

properties of the text but not the subtleties. This was due to the manner in which new 

links are added and the effect of the network learning rate. 
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It was found that the (E)PSOM algorithms are less sensitive to their parameters than 

the TPSOM. This is not surprising result, as the TPSOM only uses one neuron to 

represent a class, rather than the multiple neurons used by the (E)PSOM. 

 

The PSOM algorithm can be seen as a proof-of-concept algorithm, operating in a 

basic manner. Artificial virus and immune systems could be used to either strength 

the network or perturb it from stable states. Another area of interest is the notion of 

Self Tuning Plastics (STP) that aims to remove the requirement for a priori setting of 

network parameters and let the Neural Network set its own parameters based on 

network properties such as size. 

 

In the search for a dynamic network that can operate on non-stationary systems, it 

has been shown that the PSOM, EPSOM and TPSOM networks have all 

demonstrated aspects of this ability. As long as the general characteristics (location, 

size and temporal persistence) of a class remain similar, the classes within the input 

domain can change entirely and the network will change to meet the alteration. The 

topologies of the networks grow and shrink such that they can represent the input 

space without a huge loss of efficiency. This growing action can also be used to 

detect novelty online. This is of benefit for mobile systems where it would not be 

feasible to have large data stores that a traditional neural network would require. 

 

Three Dynamic Neural Networks have been proposed, whose topology changes in 

response to novelty in a non-stationary signal space. The PSOM and EPSOM, 

extensions on Kohonen’s SOM can cluster and classify a multidimensional input 

space. In addition, the TPSOM can be used to build up Markov Chains. Further work 

might include perturbing the structure of these networks and finding further real 

world problems to solve. 
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