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1.1 Motivation 

Traditional Artificial Neural Networks1 can not classify in non-stationary 

environments accurately. In such systems, although the class to be learnt may be 

understood, the locations in the input space of these classes are unknown. Non-

stationary systems may also change the number of classes contained in the 

environment – by adding new or removing old classes. Many real world systems are 

non-stationary, but are bounded such that the number of classes in the problem is 

restricted. This is because a Neural Network requires examples of all the classes that 

it will be required to classify prior to training. If the system is truly non-stationary, 

then it is not possible for the Neural Network to learn all the different inputs as they 

will not be present before training begins. 

  

The work described in this thesis attempts to solve this problem by developing a 

novel Neural Network that can grow and shrink its topology to accommodate non-

stationary environments. The new algorithms presented here are to be tested on 

several environments for exploration of the networks’ controlling parameters, as well 

as operating on a real Radar Data set (an example of a real world non-stationary 

environment). 

 

A novel Neural Network is required for the representation of the temporal structure 

of these non-stationary systems. This enables the temporal structure of a system to be 

investigated. Once a structured environment has been sampled for a number of 

iterations, the resulting network can be used to predict the next input. 

 

The aim of this chapter is to familiarise the reader with Neural Networks and existing 

work in this field so that the algorithms presented later can be considered in context 

                                                 
1 From this point, Artificial Neural Networks will simply be called Neural Networks. Biological 

Neural Networks are identified as such. 
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and to illustrate how typical Neural Network techniques fail to solve the problems 

given above. It begins by giving an overview of Neural Networks, their features, 

benefits and short comings. It then specifies two sorts of static Neural Network, the 

Multilayered Perceptron (MLP) and Self Organising Map (SOM). The description of 

the SOM is taken further as it is the base of this work. Temporal Neural Networks 

are then described and are shown to have the same shortcomings as the static Neural 

Networks. Growing and Pruning networks are extensions to static Neural Networks 

and go some way to solving some of the problems above. Following this is a brief 

look into how hybrid Neural Networks may be employed to solve some problems 

before finally defining a name to a type of network that can solve these problems, the 

Dynamic Neural Network and an example that fits these criteria, GNG-U. 
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1.2 Neural networks 

Neural networks are computational structures inspired from structures in the brain. 

The brain is complex, non-linear and massively parallel. The brain’s structure is 

created in two ways. Initially, there is a makeup of neurons from birth, a set of hard-

wired processing systems that are present from the outset. Secondly, the brain adapts 

by altering its structure of neurons such that new behaviours can be learnt. This is a 

learning process through experience. The phenomenon that allows the alteration of 

the neurons to learn from experience is called plasticity.  

 

In the simplest of terms, a Neural Network is a computational model of some 

property or function of the human brain. The network can be implemented in 

hardware (Schoenauer et al, 1998) or software. The following definition is offered 

(Haykin, 1999): 

 

A Neural Network is a massively parallel distributed processor made up of 

simple processing units which has a natural propensity for storing 

experiential knowledge and making it available for use.  

 

This definition is general enough to include all variants of Neural Networks while at 

the same time it is not too vague to be useful. The storing of experiential knowledge 

in an orderly way, such that it may be of use, is called learning (p.51, Haykin, 1999). 

In most Neural Network architectures, this learning process takes the form of the 

alteration of synaptic weights, such that future presentations of an input class yield 

similar results. More elaborate processes also include the removal or addition of 

neurons to the network structure (see Section 1.6). 

 

Neural networks gain additional applicability through their massively parallel, 

distributed structure and also their ability to generalise. Generalisation is the ability 

to produce a reasonable output for inputs that were not present during the training 

phase. However, Neural Networks do not solve every problem and work best when 

integrated into a larger system (Lawrence, 1997).  
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Typically, Neural Network architectures consist of a data structure of neurons 

(nodes) and weights (links, edges or arcs). The neurons hold some capacity to 

process information whereas the weights contain numerical values that are modified 

during training. 

 

Neural networks offer the user the following capabilities (Haykin, 1999): 

 

 Nonlinearity. As neurons can be inherently non-linear, the network as a 

whole is non-linear. This is a very important property, especially if the 

system providing the input is essentially non-linear. 

 Robust data acceptance. Natural data is not always low-order and well 

defined. Under these conditions, Neural Networks are more effective than 

traditional algorithms. 

 Input-Output Mapping. When using a supervised learning algorithm, a Neural 

Network can be used to provide an output given a certain input. The network 

is said to have created an input-output map. 

 Adaptivity. A network can adapt its synaptic weights to any specific 

environment and can be retrained by initialising the same network 

architecture.  

 Confidence. A network can often give its confidence in the result it has 

produced. 

 Fault Tolerance. A Neural Network’s distributed structure is robust in that its 

architecture can be damaged and the network’s operation will degrade 

gracefully. 

 VLSI Implementability. Due to a parallel design, a Neural Network is an 

excellent candidate for implementation into hardware. 

 

However, Neural Networks also suffer from the following disadvantages. 

 

 Topology preset.  Before any training has begun, the topology of the network 

needs to be set. Although there are some heuristics for estimating this 

topology, given statistical information regarding the input set (p.178, Haykin 

1999), they operate in an ad-hoc application specific fashion. Some methods 
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of altering network topology during training are noted later (See Section 1.6 

below). 

 Exemplar patterns required. As a Neural Network interpolates from given 

data, good examples of patterns belonging to the different classes are required 

before training. 

 Stationary Data Set. The classes available at training time are the only classes 

that can be accepted by the network. New classes that arrive after the training 

period will be classified incorrectly, provided the new class is outside the 

range of the outputs from existing classes. Further, old classes that no longer 

appear in the input space after training will still be stored by the network. 

This is a problem as the network will be using weight storage for classes that 

will never be shown to the network again. 

 Temporality Ignored. When training a Neural Network, it is common practice 

to randomise the order in which the patterns are presented to the network, 

removing any structure that the dataset may have contained. Thus, the order 

in which the patterns arrive at the input is ignored and potentially useful 

information is lost. 

 Overfitting. If a Neural Network is shown many examples of a class, it may 

over-fit the data. This is where the network has memorised the input data set 

and thus can no longer generalise. 

 

1.3 Static Neural Networks 

1.3.1 Feedforward networks 

Feedforward networks are a type of Neural Network that has at least input nodes, 

hidden nodes and output nodes. Learning is typically supervised (Sutton and Barto 

1998), in that the desired output is shown to the output of the network at the same 

time as the input and then learning alters weights so that a future presentation of this 

input will give the desired output. An example of a feedforward network is the Multi-

Layered Perceptron (MLP – Rosenblatt 1958). An MLP’s topology is normally a 

number of nodes arranged in layers (Figure 1.1). Typically, there is an Input, Output 

and a Hidden layer. Between each of these layers are a series of synaptic weights. 

Any input signal propagates through the network giving an output on the last layer.  
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In a typical MLP, the output of one neuron connects to the inputs of every neuron in 

the next layer; it is said to be fully connected. 

 

The classic MLP is trained using the error back-propagation algorithm (Werbos, 

1974 Rumelhart et al 1986) which is a generalisation of the Least Mean Square 

algorithm. Essentially, error back-propagation passes twice through the network on 

each learning cycle. Firstly, the forward pass uses an input vector to propagate 

activations through the network. From this, the error between the actual output and 

desired output can be calculated. This error is then used in a backward pass where 

the weights between layers are altered. The result of this is that future presentations 

of the input vector in question are more likely to give the desired output. 

 

Input
layer

Hidden
layer 

Output
layer 

Input signal 
(stimulus) 

Output signal 
(response) 

Weight 

Figure 1.1 Architectural graph of a multi-layered perceptron (MLP) showing 

three layers. 

The power of the MLP is gained from the distributed non-linearity of the neurons, 

the hidden layer which allows the network to learn complex tasks and a high degree 

of connectivity. However, these complexities lead to a lack of understanding in the 

operation and features of the network. Theoretical understanding of the whole 

network’s operation is difficult due to the high connectivity of non-linear units (pp. 

157 Haykin 1999). 

 

Applications for the MLP include pattern recognition (Lippmann, 1989) and function 

approximation (Hecht-Nielsen 1987, Funahashi 1989, Hornik et al 1990 and Poggio 
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and Girosi 1990). All these applications were successful and outlined some of the 

limitations of MLPs, especially the requirement for a well selected training input set. 

 

The error back-propagation algorithm is an efficient, polynomial, supervised learning 

technique. However, the MLP can only interpolate between patterns that it has learnt 

and this set is stationary. Although generalisation does give the MLP some ability to 

cope with corrupted patterns, it can not extrapolate to accept new classes outside of 

the training set. Also, the MLP suffers from the requirement of having its topology 

chosen and fixed before training begins. For any problem where little is known about 

the statistical relationships between the classes, it can be very difficult to use 

heuristics to decide on the size of the hidden layer(s) and an iterative process of 

trying different sizes of network normally takes place (Fahlman and Lebeire 1990). 

Back-propagation is a notoriously slow algorithm, taking many iterations to 

converge, even when applying heuristics to accelerate the process (pp.182, Haykin 

1999). Alternatives include Quickprop (Fahlman, 1988) that reduces the number of 

passes required by the network by using a second order gradient descent algorithm.  

 

The learning rate of the MLP must also be considered carefully. If it is too large, the 

Neural Network may never converge to a local minimum and if it is too small then 

training times can take many thousands of iterations. A number of schemes have 

been introduced to deal with this problem such as momentum (Rummelhart, 1986), 

Conjugate gradients (Watrous, 1988), Dynamic step sizes (Franzini, 1987) and a 

second order gradient descent also by Fahlman (1988). 

 

1.3.2 Self Organising Maps  

Self Organising Maps (SOMs, Kohonen, 1982) are structures that do not have input 

and output neurons. The neurons are arranged in a multidimensional lattice of usually 

low dimension for easy visualisation (Figure 1.2). The SOM utilises competitive 

learning: each input is shown to the network and a winning node is chosen. Over 

many training cycles, each neuron is tuned such that it better represents a point in the 

input space. This tuned neuron becomes ordered, with respect to the neurons close to 

it in the network, by altering the neurons surrounding it such that they are more 

similar to the winning node at each iteration. This notion of neighbourhood means 

Robert I. W. Lang  7 



  Introduction   

that features in the input space become characterised in the topographic map of the 

neuron space. In this manner, the spatial patterns of neurons represent the statistical 

space of the input space without external interference. This means that the locations 

of the neurons on the topographic map can be used to identify properties of the 

search space. If, for example, two neurons are close to each other then the points in 

the input space that they represent are also close together. Also, a larger cluster in the 

input space will be represented by more neurons than a smaller cluster.  

 

Input

Two dimensional 
array of neurons 

Winning neuron 

Synaptic connections from input 
to every neuron

Figure 1.2 An architectural model of Kohonen’s Self Organising Map (SOM) 
showing the winning node (focus), given an input. 

 

As a neural model, the SOM is motivated by the manner in which the brain is 

organised topographically. Sensory inputs such as tactile (Kaas et all, 1983), visual 

(Hubel and Weisel, 1977) and acoustic (Suga, 1985) are ordered onto the cerebral 

cortex in a topological manner. In the cerebral cortex, the use of computational maps 

offers the following properties (Knudsen et all., 1987): 

 

 At each stage of representation, each incoming piece of information is kept in 

its proper context. 

 Neurons dealing with closely related pieces of information are close together 

so that they interact via short synaptic connections. 

 

One important point that emerges at this point is the principle of topographic map 

formation, which may be stated as (Kohonen, 1990): 
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The spatial location of an output neuron in a topographic map corresponds 

to a particular domain or feature of data drawn from the input space. 

 

Kohonen’s SOM (1982) was not designed to explain neurobiological details, instead 

it concentrated on a computationally tractable model that captured the essential 

features of the brain’s maps. The SOM has been effectively used for pre-processing 

patterns for their recognition and projecting and also visualising high dimensional 

signal spaces on a two dimensional display (Simula et al, 1999). 

1.4 Kohonen’s Self Organising Map in Detail 

This section details the principles of Kohonen’s SOM, while simultaneously 

introducing the notations used later when describing the novel work and concepts. 

The basic SOM (Kohonen, 1982) uses adaptation as well as non-parametric 

regression techniques to achieve its goal.  Formally, a SOM may be described as a 

non-linear, ordered, smooth mapping of high-dimensional signal space onto a 

regular, low dimensional array. Notations have been changed from Kohonen’s 

original nomenclature to facilitate later comparisons with novel algorithms presented 

later (Chapters 2 and 4). 

 

Firstly, assume that an input, u, is a vector of real numbers with a size of n, thus: 

 [ ]1 2, ,..., T n
nu ξ ξ ξ= ∈ℜ  (1.1) 

Where T represents transpose. 

  

Associate each element in the regular SOM array with a regular vector xi called the 

reference vector which is a vector of real numbers. 

 

 [ ]1 2, ,..., T n
i i i inx μ μ μ= ∈ℜ  (1.2) 

 

Assuming a general distance measured between u and xi, ( )ixud , , the image of the 

input vector u on the SOM is described as the array element xc that best matches the 

input vector. Thus, the index, i, of the best match element can be defined as: 
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 ( ){ }arg min , ii
c d u= x  (1.3) 

 

At this stage, the representation moves away from the classic vector quantisation 

(VQ) algorithm in that the SOM needs to be topologically ordered (this is not a facet 

of the typical VQ algorithm). To achieve this goal of topology, a notion of 

neighbourhood is introduced. The neighbourhood, Ni refers to all the nodes within a 

certain radius around a node xi.  

 

Before any recursive processing is carried out, the reference vectors of the two-

dimensional SOM must be initialised. Normally, random numbers are used to show 

that from an arbitrary starting state, the nodes will become two-dimensionally 

ordered values. This is the most simple (and perhaps powerful) effect of self-

organisation. Let u be an input vector that needs to be learnt by the network. The first 

step is to find the element which is the best match for input u. The best matching 

node is normally found by calculating the Euclidean Distance ||u-xi|| and is called the 

focus, z. 

 

 { }arg min ii
z u x= −  (1.4) 

 

Once the focus is found, the neighbourhood, Ni, is updated such that the nodes in the 

neighbourhood learn from the input. This results in a local smoothing effect of the 

reference vectors within the neighbourhood. Local smoothing means that there is a 

gradual (or smooth) change in the values of the vectors as one scans across the 

network. Over a number of training presentations, this local organisation leads to a 

global ordering. Given that the initial values of the nodes, ui(0), are random the 

learning process can be viewed as thus: 

 

 ( ) ( ) ( ) ( ) ( )1i i zi ix t x t h t u t x t+ = + −⎡ ⎤⎣ ⎦  (1.5) 

 

where t = 0,1,2,… is an integer, the discrete time index. In the smoothing process, hzi 

plays the role of the neighbourhood function and for convergence, it is necessary for 

hzi→0 when t→∞. Typically the neighbourhood function is of the form: 
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 ( ),

,
zi j i

j i

h h r r t

r r

= −

∈ℜ ∈ℜ
 (1.6) 

 

Where rj and ri are the location of the nodes j and i in the array respectively. By 

increasing ||rj - ri||, hzi→0. There are two widely applied neighbourhood functions. 

The first, is a neighbourhood set of nodes around the focus, simply being those n 

neurons closest to the focus. This is a rectangular shaped function and can be seen in 

Equation (1.6). The other is a smooth kernel that can be written in terms of a 

Gaussian function, Equation (1.7). 

 

 ( ) ( )

2

2exp
2

j i
ci

r r
h t

t
α

σ

⎛ ⎞−⎜= ⋅ −
⎜
⎝ ⎠

⎟
⎟
 (1.7) 

 

where α(t) is a scalable learning rate factor and σ(t) defines the width of the kernel. 

Both α(t) and σ(t) are monotonically decreasing functions of time. The Gaussian 

function is often preferred as it is more biologically appropriate than a rectangular 

neighbourhood function. 

 

Other functions include sine based functions such as the sinc function (see Chapter 

2). 

 

The initial selection of the width of the neighbourhood is very important. If the 

neighbourhood is too small then the map will not be ordered globally, but instead 

order into localised pockets with large discontinuities. The neighbourhood radius is 

often set as being half the width of the network. If the initial values of the network 

were set arbitrarily then α(t) should be set close to unity, decreasing monotonically. 

With large networks, it may be necessary to minimise the learning time, making the 

selection of the parameter crucial. Once the network has been trained, information 

can be derived by inspecting the visual structure of the network or by finding the 

focus for other known inputs. No further adaptation is performed after training has 

finished and thus any changes in the input space after this point will not be reflected 

in the network. 
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The training of the network can be seen as two phases, firstly there is the self-

organising or ordering phase. This is where the network initially orders the patterns 

in the network topologically. At this point, the learning rate is high and so is the 

neighbourhood width. The second phase is the convergence phase that fine tunes the 

map to the data, providing an accurate statistical quantification of the input space. 

For this to occur, the neighbourhood width and the learning rate should be kept 

small. These requirements often lead to non-linear decay functions, which reduce 

learning rates, further complicating the process of initialisation. 

 

Improved convergence can be achieved by using alternative initialisations. Rather 

than randomly generating the initial reference vectors, a linear scheme dependent on 

the known training data can be used. This can also aid a smooth approach to the 

equilibrium point (where further alteration in the topology does not improve 

convergence) and will make better use of the neurons in the network. Given that both 

the width of the neighbourhood function and the learning rate are decreasing during 

the training phase of the network, it is not clear how the learning rate should be 

optimised (neighbourhood sizes can be set arbitrarily large and normally need no 

tuning). 

 

Although the basic SOM has been widely used (Simula et al, 1999), perhaps due to 

its simplicity of structure and yet highly complex emergent behaviours, there are 

some issues with the initialisation of the network. Questions such as ‘How many 

nodes to use?’ and ‘How many training steps?’ are often posed. Although there are 

heuristics to govern the creation of the network (Kohonen, 2001), no analytical 

theory is in place to pre-define the structure or parameters of the network before 

training. Network design heuristics also suggest that: 

 

 Hexagonal lattices are preferred as not to give any preference to vertical or 

horizontal neighbours. 

 When training samples are few then they may be used reiteratively in a cyclic 

or randomly permuted order. 

 Rare cases should be duplicated and enhanced. 

 Some exemplar patterns should be forced onto a specific location on the map. 
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 The quality of learning should be monitored by measuring the mean of ||u-xz|| 

when reiterating the input set. 

 The network should be trained several times with random initialisations and 

then the best result chosen. 

 

Like all static networks, the SOM cannot accept any new data once the training cycle 

has finished. This leads to the SOM only being able to operate on non-stationary data 

sets where the number of different classes is fixed and finite. One could try retraining 

by using a large learning rate, but the existing data would be corrupted by the arrival 

of the new pattern. Another assumption that reduces the effectiveness of the SOM is 

that the input data can be well represented in a grid structure. Intuitively the 

representations required need to be of low dimensionality (1,2 or 3) for the user to 

understand, but a hexagonal grid is not necessarily the best format for visualisation 

of a dataset. 

 

Although well proven heuristics exist for estimating the number of training inputs 

required for a certain size of network, there is no heuristic for determining the size of 

the network, given the input data. This heuristic, should it exist, would require 

knowledge of the statistical densities and regularities of the input space before 

training has begun. As the SOM is often used for finding these properties, a catch 22 

dilemma is created. For the most part, researchers use arbitrarily large networks for 

the data and rarely vary the size once the network is working. Only when the 

efficiency of the network is of particular interest is the network size properly 

investigated. Size is not the only issue; the shape of the SOM can be varied adding 

choice as well as complexity to the initialisation procedures. 

 

Another problem affecting the SOM is the requirement of exemplar patterns before 

training. The input set is often artificially fused with additional versions of an 

exemplar pattern (by repeating patterns that are known to be good examples of the 

class it belongs to), such that there will be assuredness that the network properly 

classifies it. With online systems, one is not afforded such a luxury, the patterns are 

accepted only once by the network. In real-world systems, it can be difficult to make 

sure that the training set includes exemplar patterns of each class. As dimensionality 

increases, this problem is exacerbated.  
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The SOM also ignores the temporality of patterns. Often, the order or frequency in 

which the patterns are presented to the network gives some important information. 

One example of this is the arrival of radar pulses. Each radar pulse has its own radio 

frequency and bearing, but it may also be pulsing in such a way to make 

classification by normal systems difficult. A network with a grasp of time and 

ordering may make better use of this information. 

1.5 Temporal Neural Networks 

Temporal Neural Networks are those networks that use time series blocks within data 

streams. Although they could be seen as dynamic as each pattern in the input set is a 

varying set of numbers, the number of different classes in the input space is 

stationary and the topology of the network does not change after training. Also, 

exemplar patterns are required before training. This not the case for Dynamic Neural 

Networks (see Section 1.8). A temporal Neural Network is often required to do some 

of the following (Dorffner, 1996): 

 

 Forecasting of future developments of a time series. 

 Classification of time series, into one of several classes. 

 Description of a time series in terms of the parameters of a model. 

 Mapping of one time series onto another. 

 

The first task has the most real world applications. From economics to weather 

prediction, the ability to predict the future with some certainty is highly desirable. In 

most cases, the input to a temporal network requires pre-processing to ensure optimal 

processing. This could be used to remove the existence of linear trends (an 

undesirable linear feature with a large time constant). To perform this de-trending, 

one must have a priori information regarding the operation of the system. The input 

may then be transformed to remove the trend. This often occurs in sensor drift, where 

the physical properties of the sensors slowly change (or degrade) over time giving 

different results to when they were first installed. In cases such as this, it is normal 

for the system design to be able to predict the performance of the physical system. 
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Encoding time into a Neural Network can be achieved in a number of ways 

(Chappelier and Grumbach, 1994). Firstly, time can be used to pre-process the spatial 

input set to create a spatio-temporal input set. This can be done by adding a 

dimension which refers to time or by altering the existing spatial dimensions to 

include frequency information.  

 

Time can be introduced into a Neural Network on a number of levels. Time can be 

used as an index to network states. By saving the state of the network at each time 

index, one can observe the process of the Neural Network, but this does not solve 

any time related problems. Further to this, time can be introduced by using time 

delayed weights in the propagation of Feedforward networks but this only allows the 

network to classify time series more efficiently. The deepest integration of time into 

a Neural Network model is by adding time at the neuronal level. This allows inputs 

to a neuron to be asynchronous. The firing of neurons in this case is achieved by a 

differential thresholding function. 

 

In (Chappelier et al, 1996), a self-organising map was used for the detection of 

written signatures. This was achieved by transforming the input space in to a spatio-

temporal input space. Each signature was encoded into a series of points in time, 

which then comprised the input vector. Although this network does encode 

dynamically temporal information, the network itself is not dynamic as such, as it 

does not change topology or will not accept more patterns after training. 

 

An example of time being introduced at the neuron level is presented by Klaassen 

(1991) who uses connections with temporal weights. The neuron model derives from 

biology and consists of modelling the neural propagation with differential equations. 

This allows neuronal properties such as the time when neurons are unresponsive to 

inputs (the refractory period) to be modelled in a more biologically plausible manner. 

Time is used mathematically to model the delays in the network, but this has limited 

success at solving problems where time is a factor, such as in the classification of 

time series. The introduction of time at the neuron level often leads to dynamical 

properties and complex behaviours implying oscillations (Horn and Usher, 1991). 
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More biologically inclined works are presented by Abbott and Kepler (1990) and 

Rinzel and Ermentrout (1989). This research focuses on the introduction of time into 

neuron models based upon detailed biological observations. The underling principle 

involves a ‘integrate and fire’ model or ‘leaky integrator’. In this model, the neuron 

sums inputs over time and when this sum is greater than some threshold, the neuron 

changes state. Each neuron holds a separate threshold. This research tends toward the 

understanding of biological issues rather than solving engineering problems (Tabak, 

Rinzel et al, 2001), but can be of use in engineering tasks (Gerstner 1995). 

 

A form of Neural Network which is particularly attuned to dynamical systems is the 

recurrent Neural Network (RNN). Recurrent networks are Neural Networks that have 

feedback loops. A feedback loop can either be local or global and normally contains 

a unit delay. In this manner, they have memory of the last iteration of the network’s 

operation. One such network is the Hopfield Network (Hopfield, 1982) which takes 

the time delayed outputs of the previous iteration and feeds them into the inputs of 

the current iteration. The task of the Hopfield network is one of energy minimisation 

and is rarely used for the analysis of systems where temporality of the input data is of 

interest. There are many different forms of RNN, with detailed analysis being 

beyond the scope of this work as RNN do not form the basis of the work presented. 

The architectures include tapped delay line inputs (Hopfield, 1982), recurrent 

multilayer perceptron (Jordan, 1986 and Elman, 1990) and second order networks 

(Omlin and Giles, 1996). In all of these networks, feedback is applied with tapped 

delay line memories. In principle, a recurrent Neural Network with global feedback 

can learn the underlying dynamics of a non-stationary system. Also, the network can 

track statistical variations within the data set. 

 

However, RNNs are only capable of temporal processing. The recognition or 

learning of a time series does not necessarily unlock the temporal complexities that 

are often of interest because it does not focus on the order of classes in the input set. 

The input class set is assumed to be fixed in size and the networks are topologically 

fixed in size for the entire operation. There does not exist general methods for 

constructing RNNs for a given data set, heuristics only exist for specific applications 

(Frasconi et al. 1992). 
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Another modified MLP was the Time Delay Neural Network (TDNN) by Lang2 et al 

(1990). This architecture implemented a sliding window across the input time series. 

The sliding window is shifted along the time series at each step, using the contents of 

the window at each step as the input. The original context was single word speech 

recognition at which it performed adequately. Improvements in performance could 

be made if the frequency spectrum of the input sample were included, rather than the 

raw time series data. 

 

The first temporal SOM is the Temporal Kohonen Map (TKM, Chappell and Taylor, 

1993) which is a modification to Kohonen’s SOM algorithm. In the TKM, each unit 

within the network acts as a difference equation that defines current activity as a 

function of previous activations and the current input. This is often called a ‘leaky 

integrator’ or exponential decay storage. This modification not only allows the 

network to separate similar patterns in the input space but it is also capable of giving 

context to patterns appearing in sequences. The modelling of the units in this way has 

some biological standing, as neurons retain an electrical potential on their 

membranes that eventually decays.  

 

The TKM was then further modified by Koskela et al (1998), terming it the 

Recurrent Self Organising Map (RSOM). Where the TKM had a decay function on 

the output of each unit, the RSOM used a leaky integrator onto the input. By feeding 

back a vector (rather than scalar), a direction of error could be exploited during the 

weight update. The algorithms appear identical except in the manner in which the 

optimisation occurs. Further analysis (Varsta et al., 2000) shows that the RSOM is 

superior in the simple derivation of consistent update rule. Both TKM and RSOM 

algorithms are used for temporal sequence classification such as detecting the 

difference between normal and epileptic EEG signals. Little information is given 

about the manner in which the topology of the network is generated. Also, the data 

sets that the network is trained on are stationary, new clusters can not be formed after 

the training phase. 

 

                                                 
2 Lang K. L. is not related to Lang R.I.W., the author of this thesis. 
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Another temporal SOM technique involves using a second map layered with the first 

so that the second map tries to capture the spatial dynamics of the primary (Kangas, 

1990). By doing this, the second map becomes a temporal clustering of the first. 

 

Although all the networks capture a degree of temporal information, they are not 

temporal themselves. The training is done on time series information, but the number 

of clusters in the training set is fixed. The level of dynamic processing ends at the 

time series level. Topologies are static and defined before training. Time is broken 

into chunks and then learnt or classified. This has many applications (as mentioned 

earlier) but does not solve the problem of dynamic class sets as new clusters can not 

be formed by the Neural Network. 

1.6 Growing and Pruning of Neural Networks 

This section deals with Neural Networks which can determine (to a degree) their own 

topology. This is done in two ways:- 

 Growing - Incremental networks are those networks that start with a small 

amount of neurons and weights and build into larger networks as new 

information is presented to the network. The main advantages for any type of 

growing Neural Networks are: 

o No need to estimate the size, depth or connectivity pattern of the 

network in advance. 

o Operation of the network after training is quicker as the size of the 

network is tuned to the input data. 

 

The additional implementation complexity of these networks does not impact the 

computation complexity, as the algorithms given below have been shown to 

outperform their static counterparts (Fahlman and Lebiere 1990; Fritzke 1994).  

 

 Pruning - Pruning networks begin with a large number of neurons and then 

remove those whose activation levels are statistically low. 

 

Both paradigms tend to modify or extend the existing Neural Network algorithms. 

Often, this extension leads to a network architecture that is far removed from the 
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original. This section will deal with growing and pruning techniques separately, 

detailing with the more important algorithms in the field. 

 

This area of research is not to be confused with growing schemes that use genetic 

operators that function on the genotype and on the phenotype to create the network 

(see Section 1.7). Although the topology of the network is set by a genotype, the 

network does not change shape after creation given a varying environment. These 

genetically created networks, are often said to be growing networks but they do not 

demonstrate the behaviour as given above (Nolfi and Parisi, 1995). The application 

of genetic operations with Neural Networks is discussed in more detail later. 

 

1.6.1 Growing Networks 

This section covers both growing feedforward networks and growing self organising 

maps. 

 

1.6.1.1 Growing Feedforward Networks 

The first algorithm investigated is the popular Cascade-Correlation algorithm of 

Fahlman and Lebiere (1990).  Cascade-Correlation (CC) is a supervised learning 

algorithm inspired by the error-back propagation algorithm. CC begins with a 

minimal network topology, then automatically trains and adds new hidden neurons 

one by one, creating a multilayered structure. Once a hidden unit has been added to 

the network, its input weights are frozen, thus becoming a permanent feature detector 

within the network. This feature detector can either produce outputs or go on to 

create more complex feature detectors.  

 

CC outperforms a typical MLP in training (Fahlman and Lebiere 1990). With an 

MLP, the backprop learning algorithm requires a learning rate to be set. CC 

outperforms the typical modifications to the error back-propagation algorithm (see 

Section 1.3.1), because backprop requires a reverse pass through the network, while 

CC uses a forward pass only learning rule much like that of gradient descent (pp.163, 

Haykin 1999). The second problem with a typical MLP is one of moving targets. In 

this problem, each unit of the hidden layer is trying to evolve into a useful feature 

detector that will play a role in the network’s overall operation. This task is 
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overcomplicated as there are other units also changing at the same time. The hidden 

units do not communicate directly and thus jostle for position within the network 

which takes much iteration to become stable. CC removes this problem by fixing the 

input weights when the unit is placed into the network, thus each neuron becomes a 

feature detector and remains as such. 

 

In addition to the global advantages, CC can partition a high dimensional input space 

without a dramatic slowdown as occurs with the error back-propagation algorithm. 

CC can also be used for incremental learning, where more information can be added 

to the network at a later date. Once added, a feature detector remains unchanged in 

the network. Also, at any one time, only one layer of the network is trained, so the 

results from the rest of the network can be cached, speeding up the process. CC is not 

fully dynamic, as although it can deal with more classes after the initial training has 

finished, it can not remove parts of its representation pertaining to those classes that 

are no longer part of the input space. Doing so would require the entire network to be 

retrained. 

The Recurrent Cascade Correlation algorithm (RCC, Fahlman 1991) was an addition 

to the original algorithm. The modification included local time-delayed self-loops 

and the necessary alterations to the learning algorithm. This gave RCC state memory. 

This method was used to recognise simple temporal grammars (such as the detection 

of Morse code characters). These modifications are very similar to the recurrent 

loops as suggested in Elman’s work (1988). However, the RCC is restricted in the 

sense that the local recurrent loops are insufficient to represent some finite state 

automata. This problem was noted and addressed (Giles et al, 1995) by adding fully 

recurrent links into the network. This addition leads to longer training times, but 

enabled the network to generally represent any finite state automata. Although RCC 

can classify time series and is a constructive method, RCC is not purely dynamic as 

it is not able to forget information that is no longer part of the input set. This would 

lead to very large networks, as old classes, which are no longer part of the input 

space any longer, would still be stored. 

 

Another algorithm inspired by the CC family is TACOMA (TAsk decomposition, 

COrrelation Measures and local Attention neurons) by Lange et al (1994,1997). 
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TACOMA differs from CC by using a localised routing algorithm and an activation 

function that combines the characteristics of radial basis functions (RBF, a 

feedforward network, similar to the MLP, which uses hyper-ellipsoid functions in 

three non-homogeneous layers (Broomhead and Lowe 1988)) with sigmoid units. 

The outcome of this network is that different areas of the network reflect different 

areas of expertise (similar to a Kohonen SOM). Although comparisons with CC are 

favourable, most tests are done with task decomposition problems, not general tasks. 

Also, the added computational complexity of the algorithm is not explicitly stated. It 

is, however, another example of a CC-inspired growing algorithm. 

 

1.6.1.2 Growing Self Organising Maps 

The majority of work on growing self organising maps is by Bernd Fritzke, who has 

created a family of networks based all on the SOM (Kohonen, 1982). As this work is 

most relevant to the research presented here, the family of algorithms will be dealt 

with in some detail. For an overview of his work see Fritzke (1996). All of Fritzke’s 

algorithms share the following properties: 

 

 The network is a structure consisting of nodes and edges connecting the 

nodes. 

 Each node represents a point in the input space. 

 Adaptation is done by generating an input signal, finding the node whose 

reference vector is most similar to the input signal and then moving the 

winning node and those in the topographic neighbourhood nearer to the input 

signal. 

 A local error signal is produced for every adaptation step. 

 This error determines where new nodes are to be placed in the network. 

 

From this, the first algorithm under scrutiny is the Growing Cell Structures (GCS) 

algorithm (Fritzke, 1994). The GCS model has a structure of hypertetrahedrons with 

a predetermined dimensionality. A k-dimensional hypertetrahedron is special 

amongst polyhedrons because it has only k+1vertices. The model is initialised with 

one hypertetrahedron. The adaptation steps then continue as above. After a number 

of these adaptation steps, the node with the highest accumulated error is found and 

then a decision is made as to whether to add a new node. New nodes have a 
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dimensionality of k. Since the GCS model has a fixed dimensionality, it realises a 

dimensionality reduced mapping from a potentially high dimensional input space. 

 

Secondly, the Growing Grid (GG) model (Fritzke, 1995a) uses a hyper-rectangular 

structure. To keep the structure rectangular, any addition of nodes requires the 

insertion of a complete row or column. The adaptation is done in exactly the same 

manner as above. 

 

Lastly, the most interesting of the algorithms is the Growing Neural Gas algorithm 

(Fritzke, 1995b). In this model, there are no explicit constraints on the graph. The 

graph is continuously updated using competitive Hebbian learning (Martinetz, 1995). 

GNG creates a link between the winning and second winning node at each adaptation 

step. After a number of adaptation steps, the largest error (of winner and second 

winner) is calculated and then a node added. The topology of GNG reflects the 

topology of the input and often has high dimensionality in the neuron space, making 

it difficult to visualise.  

 

The GNG algorithm is as follows, for clarity the parameter names have been omitted: 

 

1. Start with two nodes at random positions in the input space. 

2. Generate an input signal 

3. Find the nearest node and the second nearest node. 

4. Increment the ‘age’ on all edges emanating from nearest node. 

5. Add the distance between the input and the nearest node to sum an 

accumulative error variable within the node. 

6. Move the winning node and all its topographical neighbours nearer to the 

input by some fraction. 

7. If the edge between the nearest and second nearest node exists, set the age of 

this link to 0. 

8. Remove all edges older than some threshold. 

9. If the number of input signals is an integer multiple of some parameter, insert 

a new node using the accumulated error within each unit. 

10. Decrease all error variables in the nodes by multiplying by a parameter. 

11. If the stopping criterion has not been met, repeat from step 2. 
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The GNG algorithm has been widely used for mapping topographical features of an 

unknown input space. This is only really useful in 2 or 3 dimensions, after which 

visualisation becomes very difficult to achieve. For clustering and visualisation of 

unknown distributions, GNG works very well (Cheng and Zell 2000). GNG was 

extended to create GNG-U, presented at the end of the Chapter. 

 

Another growing extension to the SOM is the Growing SOM (Bauer and Villmann, 

1995). Nodes are added either to continue an existing dimension or by starting a new 

dimension. They are always added near to the centre of the map, creating larger 

hyper-cubical maps. For larger networks, derived from complex problems, the 

representation in output space can become hugely dimensional which is not 

desirable. Unlike GG, the GSOM uses time varying parameters that regress during 

training. Also, the dimensionality of GG is decided upon before training whereas the 

GSOM algorithm grows dimensionality during training. However, the GSOM cannot 

reduce its structure in any manner. 

 

A method similar to GCS is dynamic cell structures (Bruske and Sommer, 1995). 

Developed independently from Fritzke’s work, DCS combines the principle of 

insertion based on accumulated error with Hebbian learning. Bruske and Sommer 

have applied it to supervised learning and it is quite similar to GNG. A numerical 

comparison of DCS and GNG has not as yet been performed by the creators.  

 

Another approach is the Growing Hierarchical Self Organising Map, GHSOM 

(Dittenbach et al, 2000) that evolves a hierarchical structure according to the 

requirements of the input space. The GHSOM consists of a number of layers. In each 

layer is a number of SOMs. For every unit in the SOM, a new SOM in the next layer 

may be added. An accumulative error decides where the new SOM is added to, much 

like the GG method. New units are added between the focus (winning unit) and the 

most dissimilar neighbour. Although the authors of the GHSOM claim that the 

network size is much restricted for large inputs sets compared to the GG method, the 

addition of many layers in a hierarchy does not reduce the overall size of the 

network. This method is particularly useful where hierarchical clustering of the input 

data is required. 
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1.6.2 Pruning Networks 

These algorithms begin from the opposite premise to growing Neural Networks. In 

this case, networks are initially arbitrarily large and then neurons are removed to 

make the network either more computationally efficient or to increase the network’s 

ability to generalise. Most of the work in this area is applied to feedforward networks 

(Thimm and Fiesler, 1997). 

 

The main features of any pruning algorithm involve three decisions: 

 

 Which units to prune? 

 When to prune? 

 When to stop training? 

 

The choice of method to select the units to be removed is the most important as the 

other two questions are often answered within the algorithm. When designing an 

algorithm, a goal for the removal of connections needs to be chosen. This goal will 

control whether or not a connection is removed. Either the error induced from the 

removal of the unit is minimised or an estimate of the sensitivity of the Neural 

Network to the removal of a certain unit is calculated. Presently, the main methods 

for pruning are: 

 

1. The simplest heuristic is to select and remove the smallest weights. The 

values of the weights are then added to the bias of the neuron. 

2. Another possibility is to remove the connections with the smallest 

contribution variance (Sietsma and Dow 1988). The mean output of the 

removed connection is added to the corresponding bias. 

3. The sensitivity of a connection can be calculated using the current weight 

value and the next change during training (Karnin, 1990). This sensitivity can 

then be used to remove neurons from the network. 

4. A technique called Skeletonization estimates the error induced by the 

removal of a unit by multiplying its output with an additional strength (Mozer 

Robert I. W. Lang  24 



  Introduction   

and Smolensky, 1989). If setting the additional strength setting to 0 is equal 

to removing the links, then the units with a small derivative can be removed. 

5. A statistical method (Finnoff et al, 1993) defines a statistic based on the 

probability that a weight becomes zero. If this probability is high, then the 

weight it removed. This sensitivity measure is incorporated into a pruning 

method called autoprune (Prechelt, 1995). 

6. Optimal Brain Damage (OBD, Le Cun et al, 1990) works on the second 

derivatives of the error function to perform learning. The basic premise is to 

take a reasonably well working network and remove half or more of the 

weights to finish with a network that works just as well or better. This method 

essentially deletes the connections that have the least increase in error. A 

large Hessian matrix is used for this task which often makes the algorithm 

computationally expensive.  

7. Optimal Brain Surgeon (OBS, Hassibi and Stork, 1993) attempts to solve the 

computational expense in Optimal Brain Damage by removing any 

assumption about the Hessian matrix. OBS has been shown to be better than 

OBD and other simple methods (nos. 1,2,3) on some problems (Kavzoglu and 

Vieira, 1998) but the criterion for success does not include computational 

issues and is thus incomplete. 

8. Weight decay has proven to be not effective by Hanson et al (1989). Their 

experiments showed that using penalty terms meant that the weight decay 

algorithm would not converge where a normal back-propagation algorithm 

would. 

 

Although pruning is a respected way to remove neurons, it is wasteful compared to 

the constructive techniques. Although no studies are available comparing the two 

paradigms, intuitively one can suggest that to construct a network up to the optimum 

level, is computationally more efficient than training an arbitrarily large network and 

then using an algorithm to reduce it to a more optimum size. If efficiency without the 

loss of error minimisation and generalisation is the goal, then a method that starts 

small is likely to be more efficient. Unfortunately, these sorts of comparisons are in 

the realm of further work. 
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All the methods for pruning networks given above operate on high-dimensional 

multi-layered Feedforward networks. Very little literature exists for self-organising 

maps, perhaps due to the complexity of removing neurons from a regular grid or 

perhaps because the problem of over-fitting depends more on the stopping criterion 

rather than the size and shape of the network. 

1.7 Hybrid Neural Networks 

All the algorithms investigated thus far have belonged to the realm of Neural 

Networks. However, there may be acceptable solutions to be found by creating 

hybrids with algorithms in other computational fields. Integrating two different fields 

together, is normally done to solve a problem or improve the operation of the 

network. This section investigates those techniques that aim to alter the Neural 

Network such that they overcome some of the problems detailed previously in the 

chapter. 

 

The first field under scrutiny is Evolutionary Algorithms (EA). This field includes a 

number of algorithms and techniques based on the biological theories of genetics. 

The most popular algorithm is the genetic algorithm (GA) which operates a fitness 

function on a population of possible solutions (Holland, 1975). Those solutions with 

the highest fitness are used as a blueprint for the next population. The field has a 

staggering weight of literature, only the work that appears to solve the problems 

presented here is considered. 

 

The main thrust of combining GA with NN research is in either the creation of 

topologies or the augmentation of learning rules (Branke, 1995). GAs are well suited 

for these tasks as they can search complex, large, multi-modal, multivariate spaces in 

parallel. However, there has been no known research into using a GA for finding 

learning rules that can operate through time. The reasons for this lie in the 

complexity of the fitness function that must be employed to quantify the usefulness 

of each possible solution. Also, these techniques are often extremely slow to 

compute as each generation of possible solutions requires a population number in the 

100s. To train, validate and then test 100 possible neural network solutions is either a 

long sequential process or a complex parallel one. Also, a GA requires many 
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generations for the population to converge to a desirable solution, this value 

increasing with the number of parameters to be tuned. 

 

Genetic algorithms also suffer when the network is to be represented by the 

algorithm. The genotype or genetic encoding of the network must be decided in the 

design. This code includes any information that will need to be optimised, such as 

parameters, topology or weight values. There are many different ways to set the 

genotype, some methods may be more conducive to network learning than others. 

Due to the parallel, abstracted process, it can be very difficult to be certain before the 

test that an encoding will optimise correctly (Hutt 2003). 

 

The augmentation of learning rules (especially in feed-forward networks) is used to 

avoid the network being caught in poor local minima (a known problem for gradient 

descent based algorithms). Evolutionary algorithms can avoid local minima by 

searching several regions simultaneously; furthermore they do not place any 

restraints on network topology as they are not constrained by backpropagation 

learning rules. To this end, evolutionary algorithms appear appropriate for solving 

problems where gradient information is not easy to obtain (such as in recurrent 

networks). The genotype of such a system would include a number of weights of the 

network for a fixed topology. The values of the weights would be optimised by the 

genetic algorithm to produce an optimal set of weights. 

 

One drawback of genetic algorithms is their inability to fine tune parameters (Kitano, 

1990). Kitano’s work suggests that there is no benefit of GA algorithms over 

algorithms such as Quickprop (Fahlman, 1988). An algorithm that can switch 

between evolutionary algorithms and Quickprop has been suggested (Heistermann, 

1994) but this work has not been pursued. 

 

Improved results have been realised using GAs to optimise the topology of the 

network (Dodd, 1990 is one example). This is because a Neural Network’s structure 

greatly influences its performance. If the topology is too small, then the network may 

not be able to represent the desired mapping and if the structure is too large, then the 

network may not be able to generalise.  The representation of the topology for this 

problem is not so straightforward. It must be decided whether the genotype should be 
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allowed to represent networks that are flawed or meaningless and whether the 

representation should be allowed to scale up to larger networks. There is a trade off 

here between expressive power and the exclusion of meaningless representations. 

Two solutions to this problem exist, either a low level encoding that specifies each 

connection individually (Miller et al, 1989) or a high level encoding that represents 

densities of neurons (Harp et al, 1989).  

 

Some evolutionary algorithms attempt to simultaneously determine the weights and 

the structure of the network (Branke 1995). This takes a mix of the two techniques 

given above with long encoded genotypes. Unfortunately, it is often the case that the 

search space is huge and the number of generations required before any useful 

network structures are produced is also large. Also, the networks produced are 

specific to the problem given. 

 

Although evolutionary algorithms evolve networks that are efficient for the purpose 

(through either topographical or weight optimisation), once the evolution has stopped 

and a solution has been found that is fit for purpose the network is static.  

 

All the above genetic algorithms operate in a fitness space that is stationary. 

However, there is a branch of work that operates in spaces that are non-stationary. A 

standard GA has trouble operating on a non-stationary fitness landscape as after 

much iteration the population tends to cluster on a single peak, thus losing its 

diversity in search. As the landscape changes, perhaps a lesser peak becomes more 

prominent. The typical GA would have trouble switching to the other through 

recombination and mutation.  

 

Simple, application specific solutions, making use of a bi-stable system were 

suggested by Goldberg and Smith (1987). A more general extension to the GA 

(Cobb, 1990) measured the average fitness of the population members with the 

highest fitness, altering the mutation rate depending on this value. As the average 

level of  fitness decreased, the amount of mutation increased. This hypermutation 

allowed the GA to adjust to both tracking problems and to Markovian state 

transitions by retaining an element of diversity. A Markovian state transition is a 

probabilistic change from one state to another.  This process falls down if the 
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population cluster does not decline locally, but instead reduces in fitness compared to 

the whole fitness space. Further work by Grefensette (1992) and Cobb and 

Grefenstette (1993) solves this problem by persistently perturbing 30% of the 

population. Although this leads to a slower convergence, it does allow the diversity 

to be maintained. 

 

More recently the multinational GA (Ursem, 2000) uses a niching technique for 

tracking optima and sub-optima. Diversity is maintained by stopping all population 

members reaching the same peak. In this case, the population is encouraged to split 

into groups, each holding different sub-optima. This works very well for non-

stationary systems as the sub-optima are the areas of the fitness landscape most likely 

to become future optima. This method is an improvement of its predecessors as all of 

the population is involved in the tracking of the non-stationary parameter, rather than 

using a percentage over the population to track the change. Also, unlike Cobb’s 

initial work, there is no trigger to begin the tracking; the niching technique works 

constantly as part of the algorithm. 

 

The work in genetic algorithms on non-stationary fitness landscapes is of particular 

interest because if the learning rule for a Neural Network was a multinational GA, 

then the learning process could change as the statistical makeup of the input space 

changed. This would allow learning in non-stationary environments. However, like 

other GAs used for optimising Neural Networks, this could be extremely inefficient 

and very complicated. 

1.8 Novel Definition of Dynamic Neural Networks 

A term is required that differentiates the networks illustrated above with those that 

solve the problems as outlined in the motivation. Presently the term Dynamic Neural 

Network could represent any of the following: 

 

1. A Neural Network that is dynamic through learning (such as a Hopfield 

Network). 

2. A Neural Network that constructs its topology through training (such as GNG 

and CC). 

3. An algorithm that prunes it structure after training (such as OBD). 
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4. A Neural Network that operates on temporal sequences (such as TKM). 

 

For this work, a new definition of a Dynamic Neural Network is required: 

 

A dynamic Neural Network (DNN) is a Neural Network that can alter its own 

topology to accept novelty within a non-stationary signal space. 

 

In this definition, novelty is defined as a pattern belonging to a class that has not 

been shown to the network before. A stationary system is one whose class means 

(first order statistics) and variances (second order statistics) do not change over time. 

A non-stationary system is one where either the means or the variances (or both) 

change over time. The specific form of non-stationary systems considered here are 

those where classes in the input space do not change (there is no drift of classes) but 

new classes may appear and existing classes may disappear. This is the novelty in the 

non-stationary system. Drift can be taken into account in the adaptation of existing 

neurons to the input patterns but that form of non-stationary behaviour is not the aim 

of this work. In the real world problem given, radar data pulses are shown to the 

network. Although a radar source may be moving, and thus there would be drift in 

the ‘bearing’ parameter, the time constant of the drift means that many millions of 

pulses are seen before the emitter perceivably changes location. More interestingly is 

the appearance of a new radar pulse emitter and the disappearance of an existing one 

and the detection of this novelty in a timely manner. The traditional method of 

detecting novelty is using a rule based system, including many thousands of rules 

that are administered manually by a human expert. 

 

Existing Neural Networks that could claim to be dynamic do not currently fit into 

this framework for one of the following reasons: 

 

1. Topology is fixed after training. 

2. Signals or patterns in the data set are stationary. 

 

Although Cascade Correlation (CC) has the ability to accept new patterns after the 

initial training session (by simply adding new feature detectors), classes that no 

longer belong to the data set are still held by the network. Growing Neural Gas 
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(GNG) does have the ability to follow slow moving non-stationary distributions but 

rapid moving distributions often lead to neurons representing old distributions being 

held by the network. 

 

As far as the author is aware, the sole piece of existing work regarding this area of 

research is a not widely reported piece of work, Growing Neural Gas with Utility 

(GNG-U) algorithm (Fritzke, 1997). This extension to the earlier work (Fritzke, 

1995b) measures both the cumulative error and the utility of a neuron and then uses 

this information to decide whether a neuron should be removed. GNG tracks slow 

moving distributions well, however link removal is only performed locally around 

the focus neuron. As GNG-U is the only algorithm that attempts to solve the 

problems detailed above and bears some resemblance to the work here, it will be 

considered in some detail. However, it is not known to have been expanded upon 

since 1997. 

 

The GNG-U structure is similar to GNG. It consists of a directed graph of nodes and 

arcs. Each node holds a reference vector that represents a position within the input 

space. Also, each node contains an accumulated error and a utility number. The 

algorithm is mostly the same as the GNG algorithm (as stated above) with the 

following modifications. 

 

1.8.1 Utility Measure 

The utility measure allows the network to remove those units which are no longer 

required by the network, due to a change in the input distribution. Utility is a 

measure of how much the error would increase for a given input signal, u, if the 

focus, z, did not exist. In this case, the input would be mapped to the second winning 

unit, z2. Therefore, the increase in error (the utility) is simply the difference between 

||u-z|| and ||u-z2||. A local node variable, Ux, is introduced to keep the sum of the 

utility for a unit x. For each input signal, the utility variable is updated according to: 

 

 2
2x xU U u z u z= + − − − 2  (1.8) 
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As with the local error values, the utility variables are subject to exponential decay 

after each adaptation step. 

 

 x xU U U xβ= −  (1.9) 

 

The utility becomes small when the unit is very rarely the winner. This can be used 

to remove the unit when the utility falls below a fraction of the local accumulated 

error, Ex. Let i be the unit with minimum utility 

 

 cc Ui minarg=  (1.10) 

 

Then, unit i should be removed if 

 x

i

E k
U

>  (1.11) 

 

for some value of k. Large values of k will require a large ratio and therefore there 

will be fewer nodes removed. A small value of k will cause more nodes to be deleted. 

Fritzke notes (1997) that this paradigm opens up a whole area of applications 

(explored in Chapter 7, Further Work). 

 

1.9 Introduction Summary 

Classic Neural Networks (such as MLP, RBF and SOM) are static in their operation. 

Once they are trained, the input set is fixed and to accept further classes into the 

knowledge base of the network requires retraining with all of the classes. It is not 

always possible to have good examples of all of the classes before training and thus 

they will not be learnt properly. 

 

The paradigm is to train the network and then validate it. The topology, learning 

parameters and network functions (such as activation functions) are set prior to the 

training process. The problem with this approach is that the choice of topology can 

affect the network operation. The most widely used technique is to iteratively try 

different topologies until the desired learning objective is achieved. One solution to 

this problem is to grow the Neural Network by adding neurons until the desired task 
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has been solved and good results have been obtained. Pruning techniques allow a 

network that is too large to shrink, but the possible loss of valuable information 

makes this technique unfavourable. These solutions solve the problem of fixing the 

topology a priori, but the resultant networks are still static as the input data set is 

static. 

 

A new class of Neural Network termed Dynamic Neural Networks has been 

identified. Such a network does not have a fixed topology but neurons can be added 

or removed as required. This allows the network to change to meet the needs of the 

input data set. Unlike static networks, a dynamic network can learn the 

characteristics of a non-stationary data set. This ability can be exploited to detect 

novelty – that is to detect when an input belongs to a class that has not been seen 

before. 

1.10 Thesis Organisation 

 Chapter 2. Plastic Self Organising Map (PSOM). This chapter describes a 

solution to the problems given above and gives details of its extension, the 

Extended Plastic Self Organising Map (EPSOM). 

 Chapter 3. Technique Evaluation: PSOM. 

 Chapter 4. Temporal Plastic Self Organising Map (TPSOM). The TPSOM is 

an extension to the PSOM which solves an entirely different range of 

problems. 

 Chapter 5. Technique Evaluation: TPSOM. 

 Chapter 6. Discussion. The PSOM, EPSOM, TPSOM and GNG-U are 

compared. 

 Chapter 7. Conclusions and further work. 
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